Synthetic approaches toward ecteinascidins. Part 1. Preparation of an (\mathbf{E})-2-arylidene-3-benzyl-1,5-imino-3-benzazocin-4-one having a protected phenol in the E-ring

N aoki Saito, ${ }^{\text {a }}$ Kyoichi Tashiro, ${ }^{\text {a }}$ Y ukie M aru, ${ }^{\text {a }}$ Kentaro Yamaguchi ${ }^{\text {b }}$ and A kinori Kubo ${ }^{\text {*,a }}$
${ }^{a}$ M eiji C ollege of Pharmacy, 1-35-23 N ozawa, Setagaya-ku, Tokyo 154, J apan
${ }^{b}$ D epartment of A nalysis C enter, Chiba U niversity, 1-33 Yayoi-cho, I nage-ku, C hiba 263, J apan

Abstract

A synthetic strategy for the preparation of ecteinascidins isolated from the C aribbean tunicate E cteinascidia turbinata and an efficient synthesis of a key tricyclic lactam intermediate 32 are described. The key step is the intramolecular cyclization of the allylic alcohol 15 to the (E)-1,5-imino-3-benzazocine 16. Cyclization of $15(R=M e, B n)$ afforded the desired product 16 in good yield. H owever, treatment of 15 ($\mathbf{R}=$ M OM) under acidic conditions gave compound 18 in high yield, the structure of which was determined by X -ray crystallography. Finally, 16 was converted into (E)-N -methyltricyclic lactam 32 that can serve as a synthetic precursor of ecteinascidins.

Introduction

Ecteinascidins, isolated from the C aribbean tunicate E cteinascidia turbinata, ${ }^{1}$ are active against P 388 lymphoma, B 16 melanoma, M 5076 ovarian sarcoma, Lewis lung carcinoma, and the LX-1 human lung and MX-1 human mammary carcinoma xenografts. The structures of ecteinascidins were elucidated by detailed analysis of the highfield NMR and FAB mass spectral data. The crystal structures of some ecteinascidin analogues completed the unambiguous assignment of relative stereochemistry. ${ }^{2}$ The ecteinascidins are tetrahydroisoquinoline derivatives that are structurally related to safracins and saframycins from microbes. ${ }^{3}$ Because treatment of ecteinascidin 597 with HgCl_{2} followed by NaBH_{4} and methanolysis gave L-cysteine methyl ester, the absolute configuration of ecteinascidins is probably the same as that of safracins. ${ }^{4}$
We have reported on the total synthesis of (\pm)-saframycin $B-D$ and (-)-N -acetylsaframycin $M \times 2 .{ }^{5}$ To extend the scope of the synthetic route to saframycin antibiotics, we have focused our attention on the synthesis of ecteinascidins. Our initial strategy for their synthesis was based on the retrosynthetic analysis outlined in Scheme 1. Reaction of the saframycin framework C with cysteine would give the compound B. Oxidation of the phenol \mathbf{B} afforded the unsaturated ketone \mathbf{A}. Intramolecular cyclization by the SH group of compound A followed by acetylation gave ecteinascidin 594. The electrophilic ketone in ecteinascidin 594 can be condensed in a PictetSpengler reaction with a dopamine derivative to form the third tetrahydroisoquinoline ring in ecteinascidin 743. We would envision formation of the pentacyclic framework \mathbf{C} from the tricyclic lactam D, itself prepared from the allylic alcohol 1 in three steps (Scheme 2). This strategy is supported by the possible biosynthetic pathway recently presented by Rinehart and co-workers. ${ }^{6}$

We describe here a synthetic strategy for the preparation of ecteinascidins which have challenging structural features, and an efficient synthesis of a key tricyclic lactam 32 having a protected phenol in the E-ring.

Results and discussion

Our starting material for the synthesis of the E-ring portion of ecteinascidins was piperonal 3 (Scheme 3), the Baeyer-Villiger oxidation of which followed by hydrolysis under basic conditions gave sesamol 4 (70%). ${ }^{7}$ Phenol 4 was then converted almost quantitatively into the methoxymethyl ether 5 using sodium hydride and chloromethyl methyl ether in dry dimethyl-

Ecteinascidins
$743 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{OH}$
$729 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
$745 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
$770 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CN}$

Estein $R^{1}=$ Me. $X^{1}=H, X^{2}=N H_{2}$
$583 R^{1}=H, X^{1}=H, X^{2}=\mathrm{NH}_{2}$ $596 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{X}^{1}, \mathrm{X}^{2}=\mathrm{O}$

Ecteinascidin 594

Esteinascidins
$722 \mathrm{R}^{1}=\mathrm{H}$
$736 \mathrm{R}^{1}=\mathrm{Me}$

Safracins
$A Y=H$
$B Y=O H$

$A Y=C N$
$B Y=H$
$B Y=\mathrm{H}$
$S Y=O H$

Fig. 1 Structural formulae of ecteinascidins, safracins and saframycins

ecteinascidin 743

Scheme 1
formamide (DMF). Treatment of $\mathbf{5}$ with BuLi in THF at $-17^{\circ} \mathrm{C}$ followed by iodomethane treatment gave 6 (72%). D eprotection of 6 under acidic conditions afforded the phenol 7 (77%). F inally, the Duff formylation ${ }^{8}$ of 7 with hexamethylenetetraamine in acetic acid under reflux gave the benzaldehyde 8 (73\%).
The phenol 8 was protected with a methoxymethyl group to afford 9 a (Scheme 4), condensation of which with the diacetate 10^{9} in the presence of potassium tert-butoxide gave (Z)-arylidenepiperazinedione 11a (84\%). Benzylation of 11a followed by hydrazine hydrate treatment gave the N-benzylated derivative 13a (83\%). The regiochemical structure of 13a was confirmed by X-ray crystallographic analysis (Fig. 2). The piperazine ring of 13a was activated by introduction of a 2-propyloxycarbonyl group to give the imide 14a (98\%).

Chemoselective reduction of 14a with lithium tri-tertbutoxyaluminium hydride in THF afforded a diastereoisomeric mixture of the alcohol 15a, which when exposed to formic acid at $60^{\circ} \mathrm{C}$ for 1 h was converted into a new compound, the structure of which was not that desired (Scheme 5). Treatment of 15a with catalytic amount of hydrochloric acid in propan-2-ol under reflux for 1 h gave $\mathbf{1 8}(73 \%)$, the stereochemical structure of which was confirmed by X-ray crystallographic analysis (Fig. 3). The probable mechanistic pathway for the formation of $\mathbf{1 8}$ is shown in Scheme 6. The dehydration of 15a generated (Z)-17 which by isomerization of the exo-double bond gave(E)-

1

sub-goal
2
Scheme 2

Scheme 3 Reagents and conditions: a, m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 4 h and then $10 \% \mathrm{KOH}-\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$, room temp., 2.5 h ; b, NaH, DM F, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ and then $\mathrm{MOMCI}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{C}, \mathrm{BuLi}, \mathrm{THF},-17^{\circ} \mathrm{C}$, 1 h and then $\mathrm{Mel}, \mathrm{THF},-17^{\circ} \mathrm{C}, 2 \mathrm{~h}$; d, $\mathrm{HCl}, \mathrm{EtOH}$, reflux, 3 h ; e, hexamethylenetetraamine, AcOH , reflux, 30 min
17. Cyclization of (E)-17 to $\mathbf{1 8}$ (path A) is faster than that of (E)-17 to 16a (path B).

We then investigated the transformation of 14a to the corresponding phenol 19 , and were surprised to find that treatment of 14a with catalytic amount of hydrochloric acid in propan-2-ol under reflux for 2 h gave the coumarin 20 (91%) as a mixture of two rotational isomers. It is proposed that acidcatalysed 0 -deprotection of 14a affords an intermediate 19, the double bond of which is isomerized and leads to ring formation to give 20. F urther, treatment of 13a under similar conditions afforded compound 22 (81\%) (Scheme 7). Coumarin 20 had

Fig. 2 X-R ay molecular structure of compound 13a

> Series:
> a R ${ }^{1}=\mathrm{MOM}$
> $\mathbf{b ~ R}^{1}=\mathrm{Me}$
> $\mathbf{c} \mathrm{R}^{1}=\mathrm{Bn}$

Scheme 4 Reagents and conditions: $\mathrm{a}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ and then $R^{1} \mathrm{X}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{b}, \mathrm{K} \mathrm{OBu}{ }^{\mathrm{t}}, \mathrm{H}$ OBut, D M F, room temp., 24 h c, $\mathrm{NaH}, \mathrm{DM} F, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ and then BnBr , DMF, room temp., 2 h ; d , $\mathrm{NH}_{2} \mathrm{NH}_{2}-\mathrm{H}_{2} \mathrm{O}$, DMF, room temp., 1 h ; e, CICOOPri, DMAP, NEt_{3} $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 3 h
signals for two aromatic protons, in addition to those for the benzyl substituent, together with an alkene singlet. The ${ }^{13} \mathrm{C}$ NMR spectrum of the main rotamer of 20 also showed two doublet signals at $\delta 103.6$ and 111.2 assigned to the aromatic carbon together with an alkene doublet at $\delta 144.3 .{ }^{+10}$ D eprotection of $\mathbf{1 8}$ with sodium methoxide in methanol under reflux for 15 h afforded the pyrazinone 23 (39%) and compounds $\mathbf{2 4} \ddagger(10 \%)$. The ${ }^{1}{ }^{H}$ N M R spectrum of 23 displayed a hydroxyl proton which appeared at $\delta 5.17$ together with four methylene signals at $\delta 3.73,4.16,5.22$ and 5.85 ; no methine proton was observed. A cetylation of 23 with acetic anhydride in pyridine gave the acetate 25 (88\%) (Scheme 8).
\dagger The ${ }^{13} \mathrm{C}$ N M R spectrum of 3-methylcoumarin showed a C-4 doublet signal at $\delta 138.8$.
\ddagger The ${ }^{1} \mathrm{H}$ NMR spectrum of 24 showed a peak at $\delta 8.51$ which was assigned to the exo-olefinic proton, thus indicating that $\mathbf{2 4}$ has a Zconfiguration.

Fig. $3 \quad \mathrm{X}$-R ay molecular structure of compound 18

Scheme 5

Since attempts to convert 14a into 1,5-imino-3-benzazocine 16 were unsuccessful, we sought to induce this transformation by using the methyl and benzyl groups as a hydroxyl protecting group. A lkylation of the phenol 8 gave 9 b (80%) and 9 c (92%) (Scheme 4). Substrates 14b and 14c were prepared in four steps by the same procedure as used for 14a in 63 and 45% overall yields, respectively. Reduction of 14b with lithium tri-tertbutoxyaluminium hydride afforded the allylic alcohol 15b (contaminated with a small amount of 13b), which on treatment with formic acid at $70^{\circ} \mathrm{C}$ for 16 h afforded the desired cyclization product $\mathbf{1 6 b}$ with a maximum yield of only 16%. Because molecules that incorporated a methylenedioxyl group were rela-

(E)-17

16a

Scheme 6
tively unstable under these conditions, the following procedure required experimentation and optimization.§ M ethanesulfonic anhydride in dichloromethane at room temperature for 48 h brought about mild and efficient dehydration/cyclization of 15b to afford the desired cyclization product 16b (71\%) along with 13b (8\%). Reduction of 14 c followed by cyclization using methanesulfonic acid in dichloromethane under the same conditions afforded 16c (35\%) and 13c (10\%). In this case, our previous procedure ${ }^{11}$ using methanesulfonyl chloride and triethylamine in dichloromethane under reflux was effective and generated the desired product 16c (58\%) from 14c (Scheme 9). It was difficult to determine the geometry of the exo-double bond at this stage, because the signals in the ${ }^{1} \mathrm{H}$ N M R spectra of 16b
§Attempted cyclization with other protic acids instead of methanesulfonic anhydride gave 16b in low yield: TFA (22\%), TFAA (23\%), M sOH (15\%), CSA (6\%), p-TsOH (25\%).
14a
$\mathrm{HCl}, \mathrm{HOPr}$
reflux, 2 h

20
13a
$\mathrm{HCl}, \mathrm{HOPr}^{\mathrm{i}}$
reflux, 2 h

22

Scheme 7
and $\mathbf{1 6 c}$ were not split, which indicated that there was a mixture of two rotational isomers.
We then prepared the derivatives of 1,5 -imino-3-benzazocine $16 \mathrm{~d}-\mathrm{e}$. Substrates 14 d and 14 e were prepared from the benzaldehydes 34 and $9 \mathbf{c}$ with the diacetate 35 in four steps, respectively (Scheme 11). Reduction of 14d afforded the allylic alcohol 15d (contaminated with a small amount of 13d), which on treatment with formic acid at $70^{\circ} \mathrm{C}$ for 2 h afforded the desired

Scheme 8
product 16d (63\%) along with 26d (3.2\%), $\mathbf{2 7}(7.0 \%)$ I and 13d (5.3\%). The signal in the ${ }^{1} \mathrm{H}$ N M R spectrum of 16 d was not split, which also indicated that there was a mixture of two rotational isomers. H owever, the Z-isomer 26d had signals for four aromatic singlet protons together with an alkene singlet at $\delta 5.74,6.47,6.89,6.97$ and 7.19 . The ${ }^{13} \mathrm{C}$ N M R spectrum of 27 showed three methylene signals at $\delta 30.7,40.5$ and 101.3 together with a quaternary carbon signal at $\delta 100.5$. A ttempts under a variety of conditions to cyclize compound $\mathbf{1 6 e}$ from 14e via $15 e$ were fruitless; the yield was disappointingly low because of the occurrence of unwanted cyclization to give the indeno[1,2-b]pyrazin-2-one 28. ${ }^{12,13} \mathrm{~A}$ fter extensive investigation of the reaction conditions, the following procedure was found to be best in terms of product yield and reproducibility of the reaction: treatment of 15 e with 2 equiv. of methanesulfonic anhydride in dichloromethane at room temperature for 72 h gave the desired compound $\mathbf{1 6 e}(36 \%)$ along with 29 (5.2\%) and 13e (11.6\%).

Finally, we studied removal of the N -protecting group of compound 16 to give the secondary amine 30 . Since all attempts to remove the urethane blocking group of $\mathbf{1 6 b}$ under acidic conditions caused decomposition of the starting material, an alternative approach was used under basic conditions. ${ }^{14}$ D eprotection of 16 b -e with sodium methoxide in methanol under reflux gave the amines 30b-e (72-95\%) (Scheme 10). Similarly, 26d was converted into 31 (90%). The ${ }^{1}$ H N M R spectrum of 31 showed the $\mathrm{H}-1$ signal as a singlet at $\delta 4.39$, whereas in the ${ }^{1} \mathrm{H}$ N M R spectrum of 30 d it appeared at $\delta 4.96$. The C-1 signal of 31 appeared at $\delta 54.5$ which was to lower field than that of $\mathbf{3 0 d}$ ($\delta 50.7$). The δ value observed for the methine proton at the $\mathrm{C}-1$ position of compounds $\mathbf{3 0 b} \mathbf{- d}(\delta 4.91-5.46)$ indicates that this proton is positioned in the deshielding zone of the aromatic ring of the side chain at the $\mathrm{C}-2$ position. M ethylation of $31 \mathrm{~b}-\mathbf{e}$ with formaldehyde and formic acid at $70^{\circ} \mathrm{C}$ for 1 h gave the

[^0]tricyclic lactams 32b-e (86-99\%). The E stereochemical assignments for 32b-e are also based on ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral evidence

C onclusion

In summary, we have efficiently synthesised a key tricyclic lactam intermediate having a protected phenol in the E-ring. Efforts to improve the efficiency of the sequence and apply it to the total synthesis of ecteinascidins are now being made

Experimental

All melting points were determined with a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded with a Hitachi 260-10 Infra Red Fourier transform spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JN M -EX 270 spectrometer at 270 M H z. Peak multiplicities are denoted by s (single), br s(broad singlet), d (doublet), t (triplet), q (quartet), sept (septet), m (multiplet) or by a combination of these, e.g. dd (double double) with coupling constants (J) given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-EX 270 spectrometer at 65 M Hz (multiplicity determined from offresonance decoupled or DEPT spectra). M ass spectra were recorded on a JM S-DX 302 instrument with a direct inlet system operating at 70 eV . Elemental analyses were obtained using a Perkin-Elmer M odel 240B elemental analyser. All reactions were conducted under an argon atmosphere. Dry solvents and reagents were obtained using standard procedures. A nhydrous sodium sulfate was used for drying organic solvent extracts, and removal of the solvent was done with a rotary evaporator and, finally, under high vacuum. Column chromatography was performed with M erck silica gel 60 (70-230 mesh). Ether refers to diethyl ether.

6-H ydroxy-5-methyl-3,4-methylenedioxybenzaldehyde 8

(a) Sesamol 4. m-Chloroperbenzoic acid ($80 \% ; 31.7 \mathrm{~g}, 147$ $\mathrm{mmol})$ was added to a stirred solution of piperonal $3(15.0 \mathrm{~g}$, 100 mmol) in dry dichloromethane ($400 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting solution was heated under reflux for 4 h . The reaction mixture was poured onto ice-water (200 g) and the phases were separated. The aqueous layer was extracted with dichloromethane ($2 \times 200 \mathrm{~cm}^{3}$). The combined organic layer and extracts were washed with 5% aqueous sodium hydrogen carbonate ($200 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give the residue. A solution of this residue in methanol $\left(200 \mathrm{~cm}^{3}\right)$ and 10% aqueous potassium hydroxide ($40 \mathrm{~cm}^{3}$) was stirred at room temperature for 2.5 h , after which it was diluted with water (800 cm^{3}), neutralized with 2 m aqueous hydrochloric acid and extracted with chloroform $\left(3 \times 400 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water ($300 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a solid (14.5 g), recrystallization of which from ether gave sesamol 4 ($9.6 \mathrm{~g}, 70 \%$) as colourless needles, mp $62-63{ }^{\circ} \mathrm{C}$ (lit., ${ }^{7} 65^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 4.81(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 5.81(2$ $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), $6.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2$ and $8,6-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2$, $2-\mathrm{H})$ and $6.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8,5-\mathrm{H})$.
(b) (3,4-M ethylenedioxyphenoxy)methyl methyl ether 5. Sodium hydride (60% oil dispersion, washed with dry hexane three times; $5.76 \mathrm{~g}, 240 \mathrm{mmol}$) was added to a stirred solution of sesamol $4(27.6 \mathrm{~g}, 200 \mathrm{mmol})$ in dry D M F ($200 \mathrm{~cm}^{3}$), and the resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$. Chloromethyl methyl ether ($18.3 \mathrm{~cm}^{3}, 240 \mathrm{mmol}$) was added to the reaction mixture which was then stirred for 3 h at $0^{\circ} \mathrm{C}$. A fter this the reaction mixture was diluted with water ($300 \mathrm{~cm}^{3}$), and extracted with ether $\left(3 \times 300 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried, concentrated and the crude oil (49.0 g) was purified by column chromatography ($10: 1$, hexane-ethyl acetate) to give 5 ($36.2 \mathrm{~g}, 99 \%$) as a colourless oil, which was used for the next step without further purification; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.91(2 \mathrm{H}, \mathrm{s}$,

Series: $\mathrm{b}, \mathrm{R}=\mathrm{Me}, \mathrm{c}, \mathrm{R}=\mathrm{Bn}$

$$
\text { Series: d, Y }=\mathrm{H}, \mathrm{e}, \mathrm{Y}=\mathrm{Me}
$$

27

28

29

Scheme 9
$\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.3,6-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3$, $2-\mathrm{H})$ and $6.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,5-\mathrm{H})$.
(c) (2-M ethyl-3,4-methylenedioxyphenoxy)methyl methyl ether 6. A solution of $5(36.2 \mathrm{~g}, 200 \mathrm{mmol})$ in dry THF $\left(300 \mathrm{~cm}^{3}\right)$ was added to a solution of BuLi ($1.61 \mathrm{~mol}, 310 \mathrm{~cm}^{3}, 500 \mathrm{mmol}$) in hexane at $-17^{\circ} \mathrm{C}$ for 1 h . A fter being stirred for 1 h at the same temperature, the mixture was treated with a solution of iodomethane ($37.3 \mathrm{~cm}^{3}, 600 \mathrm{mmol}$) in dry THF ($100 \mathrm{~cm}^{3}$), added over 1 h ; stirring was then continued for 2 h . A fter this the reaction mixture was diluted with water ($2000 \mathrm{~cm}^{3}$) and extracted with ether ($3 \times 400 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aqueous sodium chloride ($400 \mathrm{~cm}^{3}$), dried and concentrated. The resulting crude oil (30.0 g) was purified by column chromatography (200:1, hexane-ethyl acetate) to give 6 ($27.9 \mathrm{~g}, 72 \%$) as colourless oil which was used for the next step without further purification; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.13$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.10\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$, $5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.50(1 \mathrm{H}, \mathrm{d} \mathrm{J} 8.6, \mathrm{ArH})$ and $6.57(1 \mathrm{H}, \mathrm{d}$, J $8.6, \mathrm{ArH}$.
(d) 2-M ethyl-3,4-methylenedioxyphenol 7. Concentrated hydrochloric acid ($0.1 \mathrm{~cm}^{3}$) was added to a stirred solution 6 ($9.80 \mathrm{~g}, 50 \mathrm{mmol}$) in ethanol ($80 \mathrm{~cm}^{3}$), and the resulting solution was heated under reflux for 3 h . A fter this the reaction mixture was concentrated in vacuo, and the residue was diluted with 5% aqueous sodium hydrogen carbonate solution ($200 \mathrm{~cm}^{3}$) and
extracted with ether ($3 \times 200 \mathrm{~cm}^{3}$). The combined extracts were washed with water, dried, and concentrated in vacuo to give a solid (7.30 g), recrystallization of which from benzene gave the phenol $7(5.84 \mathrm{~g}, 77 \%)$ as colourless needles, $\mathrm{mp} 94.5-95.5^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3230 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.65(1 \mathrm{H}$, $\mathrm{s}, \mathrm{OH}), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3, \mathrm{ArH})$ and 6.51 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3 \mathrm{ArH}$).
(e) 6 -H ydroxy-5-methyl-3,4-methylenedioxybenzaldehyde 8 . A solution of 7 ($17.2 \mathrm{~g}, 110 \mathrm{mmol}$) and hexamethylenetetraamine $(154.0 \mathrm{~g}, 1.1 \mathrm{~mol})$ in acetic acid ($650 \mathrm{~cm}^{3}$) was heated under reflux for 30 min . The reaction mixture was then diluted with water ($650 \mathrm{~cm}^{3}$) and extracted with chloroform ($3 \times 400 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aqueous sodium hydrogen carbonate ($600 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a solid, recrystallization of which from ethanol gave the title compound 8 ($14.5 \mathrm{~g}, 73 \%$) as colourless needles, $\mathrm{mp} 93-95^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3490$ and 1630; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 9.60(1$ $\mathrm{H}, \mathrm{s}, \mathrm{CHO}$) and $12.01(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; m/z $180\left(\mathrm{M}^{+}, 100 \%\right), 179$ (96), 121 (15), 67 (10) and 39 (11) (Found: C, 59.95; H, 4.5. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$ requires $\mathrm{C}, 60.0 ; \mathrm{H}, 4.48 \%$).

6-M ethoxymethoxy-5-methyl-3,4-methylenedioxybenzaldehyde 9a

Sodium hydride (60% oil dispersion, washed with dry hexane

16b-e, 26d
$\mathrm{NaOMe}, \mathrm{MeOH}$
reflux, 8 h

30b $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}(E$-form $)$ 30c $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}(E$-form $)$ 30d $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(E$-form $)$
30e $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}(E$-form $)$
$31 \mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$ (Z-form)

32b $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}(E$-form $)$
32c $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{OMe}(E$-form $)$
32d $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}(E$-form $)$
32e $\mathrm{R}^{1}=\mathrm{Bn}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}(E$-form $)$

Scheme 10

three times; $576 \mathrm{mg}, 24 \mathrm{mmol}$) was added to a stirred solution of the phenol $8(3.6 \mathrm{~g}, 20 \mathrm{mmol})$ in dry DM F ($100 \mathrm{~cm}^{3}$), and the resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. Chloromethyl methyl ether ($1.82 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) was added to the reaction mixture which was then stirred for 1 h at $0^{\circ} \mathrm{C}$. A fter this the reaction mixture was diluted with water ($100 \mathrm{~cm}^{3}$) and extracted with ether $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water, dried, and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetate gave the title compound $9 \mathrm{a}\left(4.19 \mathrm{~g}, 94 \%\right.$) as colourless needles, $\mathrm{mp} 93-94^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1670$ and $1615 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.04(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 7.13(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and $10.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \mathrm{m} / \mathrm{z} 224$ $\left(\mathrm{M}^{+}, 26 \%\right), 179(18), 178$ (36) and 45 (100) (Found: C, 59.20; H 5.44. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}$ requires $\mathrm{C}, 59.92 ; \mathrm{H}, 5.4 \%$).

6-M ethoxy-5-methyl-3,4-methylenedioxybenzaldehyde 9b

This compound was prepared as described above but using iodomethane ($1.5 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) to give a solid, recrystallization of which from ethyl acetate gave the title compound $\mathbf{9 b}$ ($3.09 \mathrm{~g}, 80 \%$) as colourless needles, $\mathrm{mp} 82-83^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1670$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.85(3 \mathrm{H}, \mathrm{s}$,

Sesamo

OH

35

d $14, \mathrm{R}^{2}=\mathrm{COOPr}{ }^{1}, \mathrm{R}^{3}=\mathrm{Bn}$

Scheme 11 Reagents and conditions: a, hexamethylenetetraamine, TFA, reflux, $4 \mathrm{~h} ; \mathrm{b}, \mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ and then BnBr , DM F, $0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{c}, \mathrm{KOBu}^{\mathrm{t}}, \mathrm{HOBu}^{\mathrm{t}}, \mathrm{DM} \mathrm{F}$, room temp., $24 \mathrm{~h} ; \mathrm{d}, \mathrm{NaH}$, D M F, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ and then BnBr, D M F, room temp., 2 h ; e, $\mathrm{NH}_{2} \mathrm{NH}_{2}{ }^{-}$ $\mathrm{H}_{2} \mathrm{O}$, DM F, room temp., $1 \mathrm{~h} ; \mathrm{f}, \mathrm{CICOOPri}, ~ D M A P, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temp., 3 h
$\left.\mathrm{OCH}_{3}\right), 6.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$ and 10.19 (1 H , s, CHO); m/z 194 ($\mathrm{M}^{+}, 100 \%$), 179 (31), 178 (12), 177 (26), 176 (24), 151 (15), 149 (10), 148 (48), 147 (33), 134 (14), 121 (48), 107 (14), 96 (13), 67 (17), 65 (21), 53 (12) and 39 (15) (Found: C, 61.63; H, 5.17. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$ requires C, 61.85; H, 5.19\%).

6-Benzyloxy-5-methyl-3,4-methylenedioxybenzaldehyde 9c

This compound was prepared as described above but using benzyl bromide ($2.66 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) to give a solid, recrystallization of which from ethyl acetate gave the title compound 9 c ($4.94 \mathrm{~g}, 92 \%$) as colourless needles, $\mathrm{mp} 76-77^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.92(2 \mathrm{H}, \mathrm{s}$, ArOCH ${ }_{2}$), $5.99\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.39$ ($5 \mathrm{H}, \mathrm{s}, 5 \times \mathrm{ArH}$) and $10.07(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; m/z $270\left(\mathrm{M}^{+}, 17 \%\right)$, 178 (20), 91 (100) and 65 (12) (Found: C, 70.94; H, 5.23. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 71.10 ; \mathrm{H}, 5.22 \%\right)$.

(Z)-1-A cetyl-6-(2,4,5-trimethox y-3-methylbenzyl)-3-(2methox ymethoxy-3-methyl-4,5-methylenedioxybenzylidene)-piperazine-2,5-dione 11a

A solution of potassium tert-butoxide ($1.125 \mathrm{~g}, 10 \mathrm{mmol}$) in tert-butyl alcohol $\left(20 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of the aldehyde 9a ($2.24 \mathrm{~g}, 10 \mathrm{mmol}$) and the acetate $10(3.92 \mathrm{~g}, 10$ $\mathrm{mmol})$ in dry DM F ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ over 30 min . A fter being stirred for 24 h at room temperature, the reaction mixture was poured into water ($50 \mathrm{~cm}^{3}$), and extracted with benzene (3×50 cm^{3}). The combined extracts were washed with saturated aqueous sodium chloride ($50 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetateether gave the title compound 11a ($4.68 \mathrm{~g}, 84 \%$) as pale yellow prisms, mp 149-150.5 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3240,1700$ and 1640; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.05$ and 2.27 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.61(3 \mathrm{H}, \mathrm{s}$, COCH_{3}), $3.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 3, 6-CH Ar), $3.34(1 \mathrm{H}, \mathrm{dd}$, J 13.9 and $5.9,6-\mathrm{CH} \mathrm{Ar}$), $3.49,3.56,3.57$ and 3.65 (each $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{OCHOCH} 3), 4.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9$, OCHOCH_{3}), $5.37(1 \mathrm{H}$, dd, J 5.9 and 3, $6-\mathrm{H}), 6.00(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.31,6.43$ and 6.51 (each $\left.1 \mathrm{H}, \mathrm{s}\right)$ and $8.15(1 \mathrm{H}, \mathrm{s}$, NH); m/z 556 (${ }^{+}$, 21\%), 524 (14), 482 (11), 465 (14), 236 (13), 219 (10), 196 (14), 195 (100), 165 (15) and 45 (10) (Found: C, $60.42 ; \mathrm{H}, 5.89 ; \mathrm{N}, 4.99 . \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires C, 60.42; H, 5.8; $\mathrm{N}, 5.03 \%$).

(Z)-1-A cetyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-

 methoxy-3-methyl-4,5-methylenediox ybenzylidene)piperazine-2,5-dione 11bThis compound was prepared as described above but using the aldehyde 9 b ($1.94 \mathrm{~g}, 10 \mathrm{mmol}$) to give a solid, recrystallization of which from ethyl acetate-ether gave the title compound 11b ($3.87 \mathrm{~g}, 74 \%$) as pale yellow prisms, $\mathrm{mp} 130-131.5^{\circ} \mathrm{C}$; $v_{\text {max }}{ }^{-}$ $(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3180,1690$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.05$ and 2.16 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.06(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and $3.3,6-\mathrm{CHAr}$), 3.34 (1 H , dd, J 13.5 and $5.9,6-\mathrm{CHAr}$), 3.53, $3.55,3.69$ and 3.71 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $5.37(1 \mathrm{H}$, dd, J 5.9 and 3.3, $6-\mathrm{H}$), $6.04\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right.$), 6.30, 6.43 and 6.44 (each 1 H , s) and $8.63(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 526\left(\mathrm{M}^{+}, 37 \%\right), 196$ (13), 195 (100) and 165 (11) (Found: C, 64.54; H, 5.77; N, 5.21. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ 9 requires $\mathrm{C}, 61.59 ; \mathrm{H}, 5.74 ; \mathrm{N}, 5.32 \%)$.

(Z)-1-A cetyl-6-(2,4,5-trimethox y-3-methylbenzyl)-3-(2-benzyl-oxy-3-methyl-4,5-methylenediox ybenzylidene) piperazine-2,5dione 11c

This compound was prepared as described above but using the aldehyde 9 c ($2.7 \mathrm{~g}, 10 \mathrm{mmol}$) to give a solid, recrystallization of which from ethyl acetate-ether gave the title compound 11c ($4.82 \mathrm{~g}, 80 \%$) as pale yellow prisms, mp 191$192{ }^{\circ} \mathrm{C} ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3490,1700$ and 1620; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04$ and 2.07 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.04(1 \mathrm{H}$, dd, J 13.9 and $3,6-\mathrm{CH}$ Ar), $3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 5.9 , 6 $\mathrm{CHAr}), 3.52,3.53$ and 3.66 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.62(2 \mathrm{H}, \mathrm{s}$, OCH_{2}), $5.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and $3,6-\mathrm{H}), 6.00(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.28,6.42$ and 6.45 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 7.22-7.33(5 \mathrm{H}, \mathrm{m}$, $5 \times \mathrm{ArH})$ and $8.63(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 602\left(\mathrm{M}^{+}, 28 \%\right), 511(23)$, 469 (56), 250 (17), 235 (10), 224 (10), 219 (13), 218 (14), 196 (13), 195 (100), 192 (12), 165 (18), 150 (11) and 91 (18) (Found: C, 65.96; H, 5.83; N, 4.58. $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}$ g requires C , 65.77; H, 5.69; N, 4.65\%).

(Z)-4-B enzyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-methoxymethyloxy-3-methyl-4,5-methylenedioxybenzylidene)-piperazine-2,5-dione 13a

Sodium hydride (60% oil dispersion, washed with dry hexane three times; $288 \mathrm{mg}, 12 \mathrm{mmol}$) was added to a stirred solution of the acetate 11a ($5.56 \mathrm{~g}, 10 \mathrm{mmol}$) in dry D M F ($90 \mathrm{~cm}^{3}$), and stirring was continued for 30 min at $0^{\circ} \mathrm{C}$. Benzyl bromide (1.43 $\left.\mathrm{cm}^{3}, 12 \mathrm{mmol}\right)$ in dry D M F ($10 \mathrm{~cm}^{3}$) was then added during 30 min after which the reaction mixture was stirred for a further 2 h at room temperature. A fter the reaction mixture had been
concentrated in vacuo, the residue was diluted with water (50 cm^{3}) and extracted with benzene ($3 \times 50 \mathrm{~cm}^{3}$). The combined extracts were washed with saturated aqueous sodium chloride $\left(50 \mathrm{~cm}^{3}\right)$, dried, and concentrated in vacuo to give the N-benzyl compound 12a as pale yellow oil, which was used for the next step without further purification. An analytical sample was obtained by crystallization from benzene to give pure 12a as pale yellow needles, $\mathrm{mp} 186-187^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710$, 1690 and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.07$ and 2.17 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.15(1 . \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and $5.6,6-\mathrm{CHAr})$, 3.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and 7, 6-CHAr), 3.50, 3.51, 3.59 and 3.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, \mathrm{NCHAr}), 4.59(1 \mathrm{H}$, d, J $\left.6, \mathrm{OCHOCH})_{3}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{OCHOCH}_{3}\right), 5.31(1 \mathrm{H}$, d, J 15.2, NCHAr), 5.48 (1 H , dd, J 7 and 5.6, 6-H), 6.04 (2 H , $\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), 6.47 and 6.67 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 6.91-6.95(2 \mathrm{H}, \mathrm{m})$, 7.12-7.19 ($3 \mathrm{H}, \mathrm{m}$) and $7.36(1 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z} 646\left(\mathrm{M}^{+}, 45 \%\right), 615$ (16), 614 (35), 586 (14), 585 (31), 559 (18), 555 (21), 543 (23), 309 (16), 305 (12), 277 (11), 235 (11), 196 (14), 195 (100), 165 (15) and 91 (29) (Found: C, 65.38; H,5.88; N, 4.2. $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires C, 65.0; H, 5.92; N, 4.33\%). H ydrazine monohydrate $\left(10 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of the crude acetate 12a in dry DMF ($90 \mathrm{~cm}^{3}$), and the resulting solution was stirred for 1 h at room temperature A fter the reaction mixture had been concentrated in vacuo, the residue was diluted with 5% aqueous sodium hydrogen carbonate ($100 \mathrm{~cm}^{3}$) and extracted with benzene ($3 \times 100 \mathrm{~cm}^{3}$). The combined extracts were washed with water ($100 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a solid (6.32 g), recrystallization of which from ethyl acetate gave the title compound 13 a ($5.04 \mathrm{~g}, 83 \%$) as colourless prisms, $\mathrm{mp} 180-181^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3300,1725$, 1695 and $1630 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.18$ and 2.21 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.03 (1 H, dd, J 13.9 and 8.6, 6-CHAr), 3.34 (1 H, dd, J 13.9 and $4,6-\mathrm{CHAr}$), 3.49, 3.70, 3.73 and 3.76 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.34 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 4, 6-H), 4.63 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8, \mathrm{~N}$ CH Ar), $4.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 4.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8, \mathrm{NCHAr}), 6.01$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.32(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.58$ and 6.61 (each 1 H , s), 6.93-7.00 ($2 \mathrm{H}, \mathrm{m}$), 7.16-7.23 ($3 \mathrm{H}, \mathrm{m}$) and $7.26(1 \mathrm{H}, \mathrm{s})$; $\mathrm{m} / \mathrm{z} 604(\mathrm{M}+, 12 \%), 559$ (13), 544 (36), 543 (100), 377 (12), 196 (13), 195 (65), 190 (11), 165 (12) and 91 (36) (Found: C, 65.57; $\mathrm{H}, 6.04 ; \mathrm{N}, 4.58 . \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}$ g requires $\mathrm{C}, 65.55 ; \mathrm{H}, 6.0 ; \mathrm{N}$, 4.63\%).

(Z)-4-B enzyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-methoxy-3-methyl-4,5-methylenedioxybenzylidene)-piperazine-2,5-dione 13b

This compound was prepared by the two-step reaction as described above from the acetate 11 b ($5.26 \mathrm{~g}, 10 \mathrm{mmol}$). Recrystallization of the crude reaction mixture from ethyl acetate gave the title compound ($5.31 \mathrm{~g}, 93 \%$) as colourless prisms.

Compound 12b: mp $169.5-171{ }^{\circ} \mathrm{C}$ (ethyl acetate-ether); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710,1700,1690$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.06$ and 2.15 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.16(1 \mathrm{H}$, dd, J 13.8 and $5.4,6-\mathrm{CHAr}), 3.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.8$ and 8.1 , $6-\mathrm{CHAr}$), 3.43, 3.50, 3.59 and 3.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.20 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8, \mathrm{NCHAr}$), 5.36 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8$, NCHAr), 5.50 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7$ and $5.6,6-\mathrm{H}$), 6.03 and 6.05 (each $1 \mathrm{H}, \mathrm{s}$, OCH O), 6.47 and 6.64 (each $1 \mathrm{H}, \mathrm{s}$), 6.84-6.91 ($2 \mathrm{H}, \mathrm{m}$), 7.12 (1 H, s) and 7.12-7.19 (3 H , m); m/z 616 ($\mathrm{M}^{+}, 62 \%$), 586 (14), 585 (35), 543 (26), 196 (13), 195 (100) and 165 (11) (Found: C, 66.11; $\mathrm{H}, 5.96 ; \mathrm{N}, 4.5 . \mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}$ g requires C , 66.22; H, 5.88; N , 4.54\%).

Compound 13b: mp $149.5-151^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{(\mathrm{K}} / \mathrm{cm}^{-1} 3200\right.$, 1690 and 1630: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.16$ and 2.20 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.03 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $8.9,6-\mathrm{CHAr}$), $3.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 13.9 and $3.6,6-\mathrm{CHAr}$), 3.47, 3.70, 3.74 and 3.77 (each 3 H , $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.9$ and $3.6,6-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.2, NCHAr), 4.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, ~ N C H A r$), 6.01 ($2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.58$ and 6.59 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 6.92-$ $6.96(2 \mathrm{H}, \mathrm{m})$ and 7.15-7.19 ($4 \mathrm{H}, \mathrm{m}$); m/z $574\left(\mathrm{M}^{+}, 12 \%\right), 544$ (36), 543 (100), 195 (49), 165 (11) and 91 (17) (Found: C, 66.91;

H, 6.02; $\mathrm{N}, 4.8 . \mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires C , 66.88; $\mathrm{H}, 5.96 ; \mathrm{N}$, 4.88\%).

(Z)-4-B enzyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2benzylox y-3-methyl-4,5-methylenedioxybenzylidene)-piperazine-2,5-dione 13c

This compound was prepared by the two-step reaction as described above from the acetate 11 c ($6.0 \mathrm{~g}, 10 \mathrm{mmol}$). Recrystallization of the crude reaction mixture from ethyl acetate gave the title compound ($4.0 \mathrm{~g}, 61 \%$) as colourless prisms.

Compound 12c: mp $145-146{ }^{\circ} \mathrm{C}$ (ethyl acetate-ether), $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1705,1695,1630$ and $1610 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.07$ and 2.11 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 13.9 and $5.9,6-\mathrm{CHAr}$), 3.24 (1 H , dd, J 13.9 and $6.3,6-\mathrm{CHAr}$), 3.49, 3.59 and 3.79 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6$, ArOCH), 4.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, \mathrm{NCHAr}$), 4.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6$, ArOCH), 5.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, \mathrm{~N}$ CH Ar), 5.52 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and $5.9,6-\mathrm{H}$), 6.04 and 6.06 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}$), 6.47 and 6.64 (each 1H, s), 6.82-6.91(2H , m), 7.10-7.20 (3H, m), 7.22(1H,s) and 7.28-7.36 ($5 \mathrm{H}, \mathrm{m}$); m/z $692\left(\mathrm{M}^{+}, 30 \%\right), 602$ (15), 601 (33), 560 (35), 559 (100), 308 (12), 265 (11), 195 (66), 165 (11) and 91 (33) (Found: $\mathrm{C}, 69.23 ; \mathrm{H}, 5.97 ; \mathrm{N}, 3.96 . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{9}$ requires C , 69.35; H , 5.82; N, 4.04\%).

Compound 13c: mp $168-169{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3250,1690$, 1675 and 1640; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.15$ and 2.20 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.99 (1 H, dd, J 13.9 and 8.6, 6-CH Ar), 3.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $4,6-\mathrm{CHAr}$), 3.68, 3.73 and 3.76 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $4,6-\mathrm{H}$), 4.38 and 4.45 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9$, ArOCH), 4.62 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2, \mathrm{NCHAr}), 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2$, NCHAr), $6.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.38$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 6.52 and 6.60 (each $1 \mathrm{H}, \mathrm{s}), 6.90-6.94(2 \mathrm{H}, \mathrm{m}), 7.14-7.17(3 \mathrm{H}, \mathrm{m})$, 7.20 ($1 \mathrm{H}, \mathrm{s}$), 7.27-7.34 ($5 \mathrm{H}, \mathrm{m}$); m/z 650 ($\mathrm{M}^{+}, 20 \%$), 560 (36), 559 (97), 544 (14), 543 (39), 347 (16), 282 (18), 265 (26), 250 (14), 219 (12), 195 (100), 165 (19) and 91 (68) (Found: C, 69.85; $\mathrm{H}, 5.9 ; \mathrm{N}, 4.16 . \mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\mathrm{C}, 70.14 ; \mathrm{H}, 5.89 ; \mathrm{N}$, 4.31\%).

$X-R$ ay structure determination of compound 13a

Crystals of compound $13 \mathrm{a}\left(\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O} 9\right)$ belong to the triclinic space group P 1 (\#2) with cell constants $a=11.037(6) ~ \AA$, $\mathrm{b}=18.169(9) \AA, \mathrm{c}=8.370(2) \AA, a=92.95(3)^{\circ}, \quad \beta=119.92(3)^{\circ}$, $\gamma=72.25(4)^{\circ}, Z=2, D_{c}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$. All measurements were made on a Rigaku RAXIS II imagine plate area detector with graphite monochromated $\mathrm{Mo} 0 \mathrm{~K} \alpha$ radiation. The data were collected at a temperature of $23 \pm 1{ }^{\circ} \mathrm{C}$ to a maximum 2θ value 46.3°. A total of 2862 reflections was collected. The linear absorption coefficient, μ, for $\mathrm{M} 0-\mathrm{K} \alpha$ radiation was $1.07 \mathrm{~cm}^{-1}$. The structure was solved by direct methods ${ }^{15}$ and expanded using Fourier techniques. ${ }^{16}$ The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included, but their positions were not refined; isotropic B values were refined. The final cycle of full-matrix least-squares refinement was based on 1960 observed reflections [l > 4.00 (I)] and 434 variable parameters and converged (largest parameter shift was 0.33 times its esd) with unweighted and weighted agreement factors of $R=0.066$ and $R_{w}=0.079$. N eutral atom scattering factors were taken from Cromer and Waber. ${ }^{17}$ A nomalous dispersion effects were included in $F_{c}{ }^{18}$; the values for Δf ' and $\Delta f^{\prime \prime}$ were those of Creagh and M cAuley. ${ }^{19}$ The values for the mass attenuation coefficients are those of $\mathrm{Cr} e a g h$ and $\mathrm{Hubble}{ }^{20}$ All calculations were performed using the teX san^{21} crystallographic software package of M olecular StructureC orporation. The drawing of the molecule was made by ORTEP. The atomic coordinates, bond lengths and bond angles together with the H ermol parameters for this work have been deposited with the Cambridge Crystallographic D ata Centre. A ny request for this material should be accompanied by a full bibliographic citation together with the reference number 207/57 [see Instructions for A uthors (1997), J. Chem. Soc., Perkin Trans. 1, 1997, I ssue 1].

(Z)-4-B enzyl-1-isopropyloxycarbonyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-methoxymethox y-3-methyl-4,5-methylenedioxybenzylidene) piperazine-2,5-dione 14a

A solution of 13a ($4.22 \mathrm{~g}, 7 \mathrm{mmol}$), triethylamine ($1.96 \mathrm{~cm}^{3}, 14$ mmol), and 4-(dimethylamino) pyridine ($1.71 \mathrm{~g}, 14 \mathrm{mmol}$) in dry dichloromethane ($70 \mathrm{~cm}^{3}$) was cooled with ice-water, and isopropyl chloroformate ($3.22 \mathrm{~cm}^{3}, 28 \mathrm{mmol}$) was added dropwise to it over 10 min . The solution was then stirred at room temperature for 3 h . The organic layer was washed with 1 m aqueous hydrochloric acid ($50 \mathrm{~cm}^{3}$), and then water ($50 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetate-ether gavethetitle compound 14a ($4.71 \mathrm{~g}, 98 \%$) as colourless prisms, $\mathrm{mp} 104-105^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1790,1735,1710$ and 1625; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22$ and 1.29 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.12 and 2.17 (each 3 H , $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and 6.6, 6-CHAr), $3.25(1 \mathrm{H}, \mathrm{dd}$, J 13.5 and $6.6,6-\mathrm{CHAr}$), 3.53, 3.60, 3.64 and 3.80 (each 3 H , s, OCH_{3}), $4.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{NCHAr}), 4.63$ and 4.72 (each 1 H , s, OCHOCH ${ }_{3}$), $5.01(1 \mathrm{H}$, sept, J 6.3, OCH CH 3), $5.10(1 \mathrm{H}, \mathrm{t}$, J 6.6, 6-H), 5.26 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{NCHAr}), 6.03(2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$), 6.47 and 6.69 (each $1 \mathrm{H}, \mathrm{s}$), 6.96-7.00 ($2 \mathrm{H}, \mathrm{m}$), 7.17$7.21(3 \mathrm{H}, \mathrm{m})$ and $7.27(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.7(\mathrm{q}), 9.8(\mathrm{q}), 21.5$ (q), 21.6 (q), 32.9 (t), 48.1 (t), 55.9 (q), 57.9 (d), 59.8 (q), 60.3 (q), 60.7 (q), 71.7 (d), 100.4 (t), 101.7 (t), 105.3 (d), 111.5 (d), 114.1 (s), 119.1 (s), 121.3 (s), 122.7 (d), 125.7 (s), 127.6 (d), 127.7 (d), 127.8 (s), 128.5 (d), 136.2 (s), 143.4 (s), 147.4 (s), 148.3 (s), 149.2 (s), 151.2 (s), 151.7 (s), 162.0 (s) and 16.9 (s); m/z 690 (${ }^{+}$, 11\%), 630 (20), 629 (48), 559 (10), 544 (12), 543 (33), 377 (11), 196 (17), 195 (100), 190 (10), 165 (19), 150 (10), 91 (46), 45 (13) and 43 (11) (Found: C, 64.29; H, 6.18; N, 3.97. $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{11}$ requires $\left.\mathrm{C}, 64.34 ; \mathrm{H}, 6.13 ; \mathrm{N}, 4.06 \%\right)$.

(Z)-4-B enzyl-1-isopropyloxycarbonyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-methoxy-3-methyl-4,5-methylenedioxybenzylidene) piperazine-2,5-dione 14b

A solution of 13 b ($5.45 \mathrm{~g}, 9.5 \mathrm{mmol}$), triethylamine ($2.66 \mathrm{~cm}^{3}$, 19 mmol), and 4 -(dimethylamino) pyridine ($2.32 \mathrm{~g}, 19 \mathrm{mmol}$) in dry dichloromethane ($100 \mathrm{~cm}^{3}$) was cooled with ice-water, and isopropyl chloroformate ($4.33 \mathrm{~cm}^{3}, 38 \mathrm{mmol}$) was added to it dropwise over 10 min . The solution was then stirred at room temperature for 4 h . The organic layer was then separated, washed with 1 m aqueous hydrochloric acid ($50 \mathrm{~cm}^{3}$) and then water ($50 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetate-ether gave the title compound $\mathbf{1 4 b}$ ($5.76 \mathrm{~g}, 92 \%$) as colourless prisms, $\mathrm{mp} 147.5-$ $148{ }^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1780,1720,1695$ and 1625; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$ 1.25 and 1.31 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.11 and 2.15 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and 6.6, 6-CHAr), $3.26(1 \mathrm{H}$, dd, J 13.5 and $6.6,6-\mathrm{CHAr}$), 3.44, 3.60, 3.65 and 3.85 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{NCHAr}), 5.03(1 \mathrm{H}$, sept, J 6.3, OCHCH ${ }_{3}$, $5.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,6-\mathrm{H}), 5.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9$, NCHAr), 6.02 and 6.04 (each 1 H, d, J 1.3, OCHO), 6.49 and 6.67 (each $1 \mathrm{H}, \mathrm{s}), 6.90-6.94(2 \mathrm{H}, \mathrm{m}), 7.15-7.18(3 \mathrm{H}, \mathrm{m})$ and $7.26(1 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z} 660\left(\mathrm{M}^{+}, 41 \%\right), 630(36), 629(89), 544(18)$, 543 (52), 196 (13), 195 (100), 165 (18) and 91 (21) (Found: C, 65.47; H, 6.11; N, 4.16. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires C, 65.44; H, 6.10; N, 4.24\%).

(Z)-4-B enzyl-1-isopropyloxycarbonyl-6-(2,4,5-trimethoxy-3-methylbenzyl)-3-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)piperazine-2,5-dione 14 c

A solution of the compound $13 \mathrm{c}(1.3 \mathrm{~g}, 2 \mathrm{mmol})$, triethylamine ($0.56 \mathrm{~cm}^{3}, 4 \mathrm{mmol}$), and 4-(dimethylamino)pyridine ($488 \mathrm{mg}, 4$ mmol) in dry dichloromethane ($12 \mathrm{~cm}^{3}$) was cooled with icewater, and isopropyl chloroformate ($0.92 \mathrm{~cm}^{3}, 8 \mathrm{mmol}$) was added dropwise to it over 10 min . The solution was then stirred at room temperature for 4 h . The organic layer was separated, washed with 1 m aqueous hydrochloric acid ($20 \mathrm{~cm}^{3}$) and then water ($20 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetate-ether gave the title
compound $14 \mathrm{c}(1.37 \mathrm{~g}, 93 \%)$ as colourless prisms, $\mathrm{mp} 127-$ $128.5^{\circ} \mathrm{C} ; \quad v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} \quad 1780,1725,1685$ and 1620 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.22$ and 1.30 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.12 and 2.13 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 3.17 (1 H , dd, J 13.9 and 6.9, 6 - CHAr), $3.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $6.9,6-\mathrm{CHAr}), 3.60,3.63$ and 3.79 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{NCHAr}), 4.29$ and 4.37 (each $1 \mathrm{H}, \mathrm{d}$, J 10.6, ArOCH), 5.04 (1 H , sept, J 6.3, $\left.\mathrm{OCHCH}_{3}\right), 5.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,6-\mathrm{H}), 4.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5$, NCHAr), 6.02 and 6.05 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,0 \mathrm{CHO} 0$), 6.48 and 6.69 (each $1 \mathrm{H}, \mathrm{s})$, 6.93-6.95 ($2 \mathrm{H}, \mathrm{m}$), 7.12-7.18 (3 H , m), 7.29$7.36(5 \mathrm{H}, \mathrm{m})$ and $7.36(1 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z} 736\left(\mathrm{M}^{+}, 16 \%\right), 645(19), 629$ (15), 560 (30), 559 (82), 543 (11), 527 (20), 308 (14), 282 (12), 265 (14), 250 (11), 195 (100), 165 (20), 91 (69), 44 (14) and 43 (11) (Found: C, 68.46; $\mathrm{H}, 6.02 ; \mathrm{N}, 3.8 . \mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires C, 68.46; H, 6.10; N, 3.74\%).

Attempted conversion of compound 14a to compound 16a

M ethod A. A stirred solution of 14 a ($103.5 \mathrm{mg}, 0.15 \mathrm{mmol}$) in dry THF (5 cm) was cooled in ice-water, and lithium tri-tertbutoxyaluminium hydride ($152.6 \mathrm{mg}, 0.6 \mathrm{mmol}$) was added to it over 5 min . A fter continued stirring at the sametemperature for 1 h , the reaction mixture was quenched by the addition of water ($1 \mathrm{~cm}^{3}$) and then filtered through a Celite pad. The filtrate was concentrated in vacuo to give a crude diastereoisomeric mixture of the allylic alcohols $\mathbf{1 5 a}$ (120.4 mg) which was used for the next step without further purification. A solution of the above mixture in formic acid $\left(2 \mathrm{~cm}^{3}\right)$ was heated for 1 h at $60^{\circ} \mathrm{C}$ and then was diluted with water ($10 \mathrm{~cm}^{3}$) and extracted with chloroform ($3 \times 20 \mathrm{~cm}^{3}$). The combined extracts were washed with 5% aqueous sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (121 mg). Chromatography of this on a silica gel (15 g) column with hexane-ethyl acetate (2:1) as the eluent gave compound $\mathbf{1 8}(35.4 \mathrm{mg}, 38 \%)$ as a solid, recrystallization of which from ethyl acetate gave the pure compound as pale yellow prisms.

M ethod B. Reduction of 14a ($690 \mathrm{mg}, 1 \mathrm{mmol}$) with lithium tri-tert-butoxyaluminium hydride ($1.02 \mathrm{~g}, 4 \mathrm{mmol}$) as described above afforded the allylic alcohol $\mathbf{1 5 a}(810 \mathrm{mg})$. A solution of this residue in propan-2-ol ($15 \mathrm{~cm}^{3}$) was cooled in ice-water, and a propan-2-ol ($20 \mathrm{~cm}^{3}$) solution of hydrochloric acid (0.005 cm^{3}) was added dropwise to it over 5 min . This mixture was then heated under reflux for 1 h after which it was concentrated in vacuo. The residue was diluted with 5% aqueous sodium hydrogen carbonate ($30 \mathrm{~cm}^{3}$) and extracted with ether (3×30 $\left.\mathrm{cm}^{3}\right)$. The combined extracts were washed with water $\left(30 \mathrm{~cm}^{3}\right)$, dried and concentrated in vacuo to give a solid, recrystallization of which from ethyl acetate gave compound 18 ($491 \mathrm{mg}, 73 \%$) as pale yellow prisms, mp $172-173^{\circ} \mathrm{C} ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3120$, 1690, 1660 and $1635 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$: this compound was a mixture of two rotational isomers, ratio, $2: 1) 0.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9$, $\left.\mathrm{CHCH}_{3}\right), 1.12\left(2 / 3 \times 3 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{CHCH}_{3}\right), 1.20(1 / 3 \times 3 \mathrm{H}, \mathrm{d}$, J $5.9, \mathrm{CHCH}_{3}$), 2.19 and 2.25 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.10(1 \mathrm{H}$, brt, 6-CH Ar), 3.39 ($1 \mathrm{H}, \mathrm{brd}, 6-\mathrm{CHAr}$), 3.78, 3.81 and 3.81 (each 3 $\left.\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.71(1 \mathrm{H}, \text { sept, J } 5.9, \mathrm{OCHCH})_{3}\right), 4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.8, N CHAr), 5.03 ($1 / 3 \times 1 \mathrm{H}$, brt, CH), 5.16 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8$, NCHAr), $5.33(2 / 3 \times 1 \mathrm{H}, \mathrm{brt}, \mathrm{CH}), 5.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.95$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.3, \mathrm{C}=\mathrm{CH}), 6.11(1 / 3 \times 1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCHN}), 6.27(2 / 3$ $\times 1 \mathrm{H}$, br s, OCHN), $6.35(1 \mathrm{H}, \mathrm{s}), 6.80(1 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.87(2 /$ $3 \times 1 \mathrm{H}, \mathrm{s})$ and $7.23-7.36(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.8(\mathrm{q}), 9.7(\mathrm{q})$, 21.1 (q), 21.9 (q), 33.1 (t), 46.8 (t), 56.4 (q), 58.3 (d), 60.2 (q), 60.8 (q), 70.1 (d), 79.8 (d), 101.1 (t), 103.4 (d), 108.7 (d), 112.7 (d), 115.7 (s), 125.3 (s), 126.5 (d), 127.5 ($2 \times \mathrm{d}$), $128.9(2 \times \mathrm{d})$, 136.0 (s), 142.1 (s), 146.0 (s), 147.2 (s), 148.8 (s$), 151.3$ (s$), 153.9$ (s) and 167.7 (s); m/z $630\left(\mathrm{M}^{+}, 84 \%\right)$, 544 (37), 543 (100), 349 (43), 195 (47), 190 (10), 165 (13) and 91 (34) (Found: C, 66.6; $\mathrm{H}, 6.02 ; \mathrm{N}, 4.43 . \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}$, requires $\mathrm{C}, 66.65 ; \mathrm{H}, 6.07 ; \mathrm{N}$, 4.44\%).

X-R ay structure determination of compound 18

Crystals of $18\left(\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{9}\right)$ belong to the monoclinic space
group $\mathrm{P} 2_{1} / \mathrm{a}$ (\#14) with cell constants $\mathrm{a}=8.798(4) \mathrm{A}$, $\mathrm{b}=24.625(3) \AA, \quad \mathrm{c}=14.765(2) \AA, \quad \beta=104.42(2)^{\circ}, \quad Z=4$, $D_{c}=1.352 \mathrm{~g} \mathrm{~cm}^{-3}$. All measurements were made on a R igaku RAXIS II imagine plate area detector with graphite monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation. The data were collected at a temperature of $23 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value 44.1°. A total of 3438 reflections was collected. The linear absorption coefficient, μ, for M $0-\mathrm{K} \alpha$ radiation was $0.98 \mathrm{~cm}^{-1}$. The data were corrected for Lorentz and polarization effects. The structure was solved by direct methods ${ }^{15}$ and expanded using Fourier techniques. ${ }^{16}$ Thenon-hydrogen atoms were refined anisotropically. H ydrogen atoms were included, but their positions were not refined; isotropic B values were refined. The final cycle of full-matrix leastsquares refinement was based on 2915 observed reflections [l>3.00 $(1)]$ and 454 variable parameters and converged (largest parameter shift was 0.29 times its esd) with unweighted and weighted agreement factors of $R=0.064$ and $R_{w}=0.079$. Neutral atom scattering factors were taken from Cromer and Waber. ${ }^{17}$ A nomalous dispersion effects were included in $\mathrm{F}_{\mathrm{c}}{ }^{18}$ the values for Δf^{\prime} and Δf " were those of Creagh and M CAuley. ${ }^{19}$ The values for the mass attenuation coefficients are those of Creagh and H ubble ${ }^{20} \mathrm{~A}$ Il calculations were performed using the teX san ${ }^{21}$ crystallographic software package of M olecular Structure C orporation. The drawing of the molecule was made by ORTEP. The detailed crystallographic results for this work have been deposited with the C ambridge Crystallographic D ata Centre: see comments under the structural determination for compound 13a.

Reaction of compound 14a with hydrochloric acid in propan-2-01 A solution of 14 a ($138 \mathrm{mg}, 0.2 \mathrm{mmol}$) in propan- 2 -ol ($4 \mathrm{~cm}^{3}$) was cooled in ice-water and a propan-2-ol $\left(4 \mathrm{~cm}^{3}\right)$ solution of hydrochloric acid $\left(0.001 \mathrm{~cm}^{3}\right)$ was added dropwise to it over 5 min . This mixture was heated under reflux for 2 h after which it was concentrated in vacuo. The residue was diluted with 5% aqueous sodium hydrogen carbonate ($10 \mathrm{~cm}^{3}$) and extracted with ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with water ($10 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a solid (140 mg), recrystallization of which from ethyl acetate gave the compound 20 ($117 \mathrm{mg}, 91 \%$) as pale yellow prisms, mp $163-164{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3260,1735,1710$ and 1635 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$: this compound was a mixture of two rotational isomers, ratio, 2:1 (major isomer) 1.11 and 1.23 (each $3 / 4 \times 3$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.12 and 2.32 (each $3 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.80(3 / 4 \times 1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $9.9,6-\mathrm{CHAr}), 2.99(3 / 4 \times 1 \mathrm{H}$, dd, J 13.9 and 3.6, $6-\mathrm{CHAr}$), 3.59, 3.70 and 3.74 (each $3 / 4 \times 3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.23(3 / 4 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{NCHAr}), 4.51(3 / 4 \times 1$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.76\left(3 / 4 \times 1 \mathrm{H}\right.$, sept, J $\left.6.3, \mathrm{OCHCH} \mathrm{B}_{3}\right), 5.64(3 / 4 \times 1$ H, d, J 14.9, NCHAr), 5.71 ($3 / 4 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}$), 6.04 $\left(3 / 4 \times 2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.45$ and 6.61 (each $3 / 4 \times 1 \mathrm{H}, \mathrm{s}$), 7.18 $(3 / 4 \times 2 \mathrm{H}, \mathrm{m}), 7.21-7.24(3 / 4 \times 3 \mathrm{H}, \mathrm{m})$ and $7.51(3 / 4 \times 1 \mathrm{H}, \mathrm{s})$; (minor isomer) 1.17 and 1.23 (each $1 / 4 \times 3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, $\left.\mathrm{CHCH}_{3}\right), 2.18$ and 2.27 (each $\left.1 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.99(1 / 4 \times 2$ H), 3.57, 3.80 and 3.80 (each $\left.1 / 4 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.08(1 / 4 \times 1$ H, d, J 13.9, NCHAr), $4.76(1 / 4 \times 1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.76(1 / 4 \times 1 \mathrm{H}$, sept, J 6.3, OCHCH_{3}), $5.46(1 / 4 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9, \mathrm{NCHAr}), 5.46$ $(1 / 4 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{NH}), 6.00(1 / 4 \times 1 \mathrm{H}, \mathrm{s}), 6.02(1 / 4 \times 2 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{O}$), 6.29 and 6.57 (each $\left.1 / 4 \times 1 \mathrm{H}, \mathrm{s}\right), 6.00(1 / 4 \times 2 \mathrm{H}, \mathrm{m})$ and 7.21-7.24 (1/4 $\times 3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $8.4(\mathrm{q})$, 9.7 (q), 22.0 (q), 32.9 (t), 50.2 (t), 53.3 (d), 55.6 (q), 60.1 (q), 60.6 (q), 68.2 (d), 102.2 (t), 103.6 (d), 108.0 (s), 111.2 (d), 123.2 (s), 124.6 (s), 125.3 (s), 127.4 (d), 128.4 (d), 128.7 (s), 136.5 (s), 144.1 (s), 144.3 (d), 146.9 (s), 149.0 (s), 150.4 (s), 150.8 (s$), 156.1$ (s$),$ 159.1 (s) and 172.8 (s); (minor isomer) 8.4 (q), $9.8(\mathrm{q}), 22.0(\mathrm{q})$, 22.0 (q), 35.3 (t), 50.4 (t), 52.0 (d), 55.8 (q), 60.3 (q), 60.5 (q), 68.3 (d), 102.1 (t), 103.0 (d), 108.4 (s), 112.1 (d), 123.2 (s), 124.7 (s), 125.3 (s), 127.5 (d), 128.4 (d), 128.7 (s), 136.3 (s), 142.9 (d), 144.1 (s), 146.9 (s), 149.3 (s), 150.2 (s), 151.1 (s), 155.1 (s), 159.1 (s) and 172.2 (s); m/z $646\left(\mathrm{M}^{+}, 38 \%\right), 543$ (45), 512 (54), 397 (41), 309 (100), 235 (77), 195 (94) and 91 (60) (Found: C, 64.68;
$\mathrm{H}, 5.91 ; \mathrm{N}, 4.18 . \mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{10}$ requires $\mathrm{C}, 65.0$; $\mathrm{H}, 5.92 ; \mathrm{N}$ 4.18\%).

1-B enzyl-3-(2,4,5-trimethoxy-3-methylbenzyl)-6-(2-hydroxy-3-methyl-4,5-methylenedioxybenzyl)pyrazin-2(1H)-one 23

 A stirred solution of $18(56.0 \mathrm{mg}, 0.089 \mathrm{mmol})$ in dry methanol ($3 \mathrm{~cm}_{3}$) was cooled in ice-water, and a methanol solution of sodium methoxide ($28 \% ; 1.05 \mathrm{~cm}^{3}$) was added dropwise to it over 5 min . This mixture was heated under reflux for 15 h after which it was diluted with water ($10 \mathrm{~cm}^{3}$), acidified with 1 m hydrochloric acid, made alkaline with 5% aqueous sodium hydrogen carbonate and extracted with chloroform (3×20 $\left.\mathrm{cm}^{3}\right)$. The combined extracts were washed with water ($20 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (50 mg), chromatography of which on a silica gel (8 g) column with benzene-ethyl acetate ($9: 1$) as the eluent gave the compound $\mathbf{2 4}$ $(4.7 \mathrm{mg}, 10 \%)$ and with benzene-ethyl acetate ($4: 1$) as the eluent gave the title compound $\mathbf{2 3}$ ($18.9 \mathrm{mg}, \mathbf{3 9 \%}$) as a pale yellow amorphous powder.Compound 23: amorphous powder, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3610$, 3500-3200, 1645 and 1595; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.04$ and 2.20 (each 3 H , $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 3.63\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{C}\right), 3.74$ and 3.76 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{C}\right), 5.17(1 \mathrm{H}$, br s, OH), $5.22(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} 2 \mathrm{Ar}), 5.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.23,6.67$ and 6.96 (each $1 \mathrm{H}, \mathrm{s}), 7.09-7.12(2 \mathrm{H}, \mathrm{m})$ and 7.24-7.27 (3 H , $\mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CHCl}_{3}\right) 8.9(\mathrm{q}), 9.7(\mathrm{q}), 30.5(\mathrm{t}), 33.8(\mathrm{t}), 47.0(\mathrm{t}), 55.8(\mathrm{q})$, 60.2 (q), 60.8 (q), 101.0 (t), 106.2 (d), 107.5 (s), 111.4 (d), 113.6 (s), 123.5 (d), 125.4 (s), 126.0 (s), 126.5 (d), 127.5 (d), 128.7 (d), 135.4 (s), 138.2 (s), 141.0 (s), 145.7 (s), 146.5 (s), 146.6 (s), 149.0 (s), 150.7 (s), 156.7 (s) and 156.8 (s); m/z 544 (${ }^{+}, 100 \%$), 542 (15), 513 (26), 453 (18), 422 (19), 381 (13), 271 (22), 230 (13), 200 (28), 181 (12) and 91 (27) (Found: $\mathrm{M}^{+}, 544.2210$. $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{M}, 544.2205$).

Compound 24: mp $236-237^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1675,1650$ and 1605; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.24$ and 2.26 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.76$, 3.85 and 3.98 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $5.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 5.97$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.29$ and 6.42 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 7.26-7.36(5 \mathrm{H}$ m), 7.67 and 8.51 (each $1 \mathrm{H}, \mathrm{s})$; m/z $540\left(\mathrm{M}^{+}, 100 \%\right)$, 525 (17), 510 (11), 509 (31), 419 (28), 418 (38), 403 (20), 373 (16), 361 (12), 360 (44) and 91 (15) (Found: C, 67.98; H, 5.19; N, 4.99. $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O} \cdot \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.75 ; \mathrm{H}, 5.32 ; \mathrm{N}, 5.1 \%$).

A cetylation of the phenol 23

A cetic anhydride ($0.4 \mathrm{~cm}^{3}$) was added to a solution of the phenol $23(32.4 \mathrm{mg}, 0.06 \mathrm{mmol})$ in dry pyridine ($1.0 \mathrm{~cm}^{3}$), and the mixture was set aside at room temperature for 2 h . A fter being diluted with 5% aqueous sodium hydrogen carbonate $\left(10 \mathrm{~cm}^{3}\right)$ the mixture was extracted with chloroform ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were washed with water ($10 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (44 mg). Chromatography of this on a silica gel $(8 \mathrm{~g})$ column with hexane-ethyl acetate ($1: 1$) as the eluent gave the acetate $25(31 \mathrm{mg}, 88 \%$) as pale yellow amorphous powder; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1755,1645$ and $1585 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.03$ and 2.23 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.55\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{C}\right), 3.72,3.78$ and 3.79 (each 3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.21\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2} \mathrm{C}\right), 5.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{H}_{2} \mathrm{Ar}\right)$, $5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.23,6.74$ and 7.04 (each $\left.1 \mathrm{H}, \mathrm{s}\right)$ and 7.28-7.35 (3 H , m); m/z 586 (${ }^{+}$+ 100\%), 555 (21), 464 (16), 406 (16), 271 (14) and 91 (30) (Found: $\mathrm{M}^{+}, 586.2319 . \mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{M}, 586.2315$.)

Reaction of compound 13a with hydrochloric acid in propan-2-ol A solution of 13 a ($90.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) in propan-2-ol $\left(4 \mathrm{~cm}^{3}\right)$ was cooled in ice-water and a propan-2-ol ($4 \mathrm{~cm}^{3}$) solution of hydrochloric acid ($0.001 \mathrm{~cm}^{3}$) was added dropwise to it over 5 min . A fter this mixture had been heated under reflux for 2 h it was concentrated in vacuo and the residue was diluted with 5% aqueous sodium hydrogen carbonate ($10 \mathrm{~cm}^{3}$) and extracted with ether ($3 \times 10 \mathrm{~cm}^{3}$). The combined extracts were washed with water ($10 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to
give a solid (108 mg), recrystallization of which from ethyl acetate gave compound 22 ($66.1 \mathrm{mg}, 81 \%$) as pale yellow prisms, mp $146-149{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1690,1675,1645,1625$ and 1610; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.17$ and 2.23 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.25(1 \mathrm{H}$, dd, J 13.5 and 4.3, ArCHC), 3.49 ($1 \mathrm{H}, \mathrm{dd}$, J 13.5, 5.9, ArCHC), 3.63, 3.68 and 3.71 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2$, NCHAr), 5.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and 4.3, CH), 5.07 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2$, NCHAr), $5.92(1 \mathrm{H}, \mathrm{s}), 5.93\left(2 \mathrm{H}\right.$, diffuse $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.29$ and 6.72 (each $1 \mathrm{H}, \mathrm{s}), 6.96-6.99(2 \mathrm{H}, \mathrm{m})$ and 7.21-7.36 ($3 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 8.5(\mathrm{q}), 9.8(\mathrm{q}), 35.4(\mathrm{t}), 44.9(\mathrm{t}), 55.6(\mathrm{q}), 60.2(\mathrm{q})$, 61.0 (q), 62.0 (d), 101.5 (t), 102.3 (d), 107.6 (s), 111.0 (d), 111.9 (s), 112.2 (d), 122.4 (s), 124.6 (s), 125.3 (s), 126.2 (d), 127.5 (d), 128.9 (d), 134.8 (s), 143.1 (s), 144.0 (s), 146.8 (s), 147.2 (s), 148.6 (s), 151.5 (s), 151.6 (s) and 167.3 (s); m/z 542 (${ }^{+}, 15 \%$), 348 (24), 347 (100), 195 (36) and 91 (25) (Found: C, 68.28; H, 5.62; $\mathrm{N}, 5.04 . \mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}$ requires C , $68.4 ; \mathrm{H}, 5.59 ; \mathrm{N}$, 5.15\%).

I sopropyl (E)-3-benzyl-1,2,3,4,5,6-hex ahydro-2-(2-methoxy-3-methyl-4,5-methylenediox ybenzylidene)-7,9,10-trimethoxy-8-methyl-4-ox0-1,5-imino-3-benzazocine-11-carbox ylate 16b

A stirred solution of $\mathbf{1 4 b}$ ($264 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dry THF (15 cm^{3}) was cooled in ice-water, and lithium tri-tert-butoxyaluminium hydride ($406.8 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added to it over 5 min . A fter continued stirring at the same temperature for 1 h , the reaction mixture was quenched by addition of water $\left(1 \mathrm{~cm}^{3}\right)$ and filtered through a Celite pad. The filtrate was concentrated in vacuo to give a crude diastereoisomeric mixture of the allylic alcohols 15b (458 mg) (along with compound 13b) which was used for the next step without further purification. M ethanesulfonic anhydride ($84 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added to a stirred solution of the above mixture in dichloromethane ($2 \mathrm{~cm}^{3}$), and stirring continued for 48 h at room temperature. The reaction mixture was then diluted with water ($20 \mathrm{~cm}^{3}$) and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with 5% aqueous sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (316 mg). Chromatography of this on a silica gel (16 g) column with hexane-ethyl acetate ($2: 1$) as the eluent gave the title compound $\mathbf{1 6 b}$ ($183.1 \mathrm{mg}, 71 \%$) as a solid, recrystallization of which from ethyl acetate gave the pure compound as pale yellow prisms. Further elution with ethyl acetate gave 13b (18.8 mg , 8.1%) as prisms whose spectra were identical with those of an authentic sample as above; mp $216.5-218^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $1740,1695,1670,1640$ and $1625 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$: this compound was a mixture of two rotational isomers, ratio, 2:1) 1.32 $\left(2 / 3 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}\right), 1.46(1 / 3 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, CHCH_{3}), 2.13 and 2.20 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$) 2.87 and 3.05 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $5.6,6-\mathrm{H} \alpha$), $3.31(1 \mathrm{H}, \mathrm{d}$, J $16.2,6-\mathrm{H} \beta$), 3.47 and 3.70 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.46(1 \mathrm{H}, \mathrm{d}$, J 16.2, NCHAr), 5.08 (1 H , sept, J 6.3, OCH CH 3), $5.24(1 / 3 \times 1$ H, d, J 5.6, 5-H), $5.26(2 / 3 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,5-\mathrm{H}), 5.73(1 \mathrm{H}, \mathrm{d}$, J 16.2, NCHAr), $5.93\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.01(2 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.05$ ($1 / 3 \times 1 \mathrm{H}, \mathrm{s}$), $6.61-6.66(3 \mathrm{H}, \mathrm{m}), 6.99-7.08(3 \mathrm{H}, \mathrm{m}), 7.20$ $(2 / 3 \times 1 \mathrm{H}, \mathrm{s})$ and $7.56(1 / 3 \times 1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ (major isomer) $9.0\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 22.3\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 27.4(\mathrm{t}, \mathrm{C}-6)$, 43.5 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}$), 46.4 (d, C-1), 52.8 (d, C-5), 59.2, 59.7, 60.0 and $60.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 70.1(\mathrm{~d}, \mathrm{OCH}), 101.0\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 105.7$ (d, C=CH), 107.4(d), 113.4 (s), 122.5 (s), 125.3 (s), 125.4 (s), 126.1 (d), 126.6 (d), 128.3 (d), 134.4 (s), 136.4 (s), 142.8 (s), 145.6 (s), 150.2 (s), 152.2 (s), 152.7 (s), 152.9 (s, COO) and 168.4 (s, NCO); (minor isomer) $9.0\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 21.9$ (q, CHCH_{3}), 28.2 ($\mathrm{t}, \mathrm{C}-6$), $43.5\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), 45.8 ($\mathrm{d}, \mathrm{C}-1$), 53.5 (d, C-5), 59.2, 59.760 .0 and 69.6 (q, OCH_{3}), 70.1 (d, OCH), $101.0\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right.$), 106.3 (d, C=CH), 107.7 (d), 113.4 (s$), 122.2$ (s), 125.3 (s$), 125.4$ (s$), 126.1$ (d), 126.6 (d), 128.3 (d), 134.4 (s), 136.4 (s), 142.8 (s), 146.2 (s), 150.2 (s), 152.2 (s), 152.7 (s), 152.9 (s, COO) and 168.4 (s, N CO); m/z $644\left(\mathrm{M}^{+}, 100 \%\right)$ and 234 (19) (Found: C, 66.7; H, 6.37; N , 4.17. $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{9}$ requires $\mathrm{C}, 67.06$; H, 6.25; H , 4.35\%).

I sopropyl (E)-3-benzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)-7,9,10-trimethoxy-8-methyl-4-oxo-1,5-imino-3-benzazocine-11-carboxylate 16c
A stirred solution of $\mathbf{1 4 c}(110.4 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF (5 cm^{3}) was cooled in ice-water, and lithium tri-tert-butoxyaluminium hydride ($228.8 \mathrm{mg}, 0.9 \mathrm{mmol}$) was added to it over 5 min . A fter continued stirring at the sametemperature for 1 h , the reaction mixture was quenched by addition of water ($1 \mathrm{~cm}^{3}$) and filtered through a Celite pad. The filtrate was concentrated in vacuo to give a crude diastereoisomeric mixture of the allylic alcohols $\mathbf{1 5 c}(140 \mathrm{mg}$) (along with compound 13c) which was used for the next step without further purification. A solution of the above mixture and triethylamine $\left(0.038 \mathrm{~cm}^{3}\right.$, 0.27 mmol) in dichloromethane ($6 \mathrm{~cm}^{3}$) was cooled in ice-water, and methanesulfonyl chloride ($0.021 \mathrm{~cm}^{3}, 0.27 \mathrm{mmol}$) was added dropwise to it over 10 min . The mixture was heated under reflux for 17 h after which it was washed with 1 m aqueous hydrochloric acid ($20 \mathrm{~cm}^{3}$) and then with water ($10 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (129 mg). Chromatography of this on a silica gel (20 g) column with hexane-ethyl acetate ($2: 1$) as the eluent gave the title compound 16c (62.1 $\mathrm{mg}, 57.5 \%$) as a solid, recrystallization of which from ethyl acetate-ether gave the pure compound as pale yellow prisms. F urther elution with ethyl acetate gave 13c ($24.4 \mathrm{mg} .10 .6 \%$) as prisms whose spectra were identical with those of an authentic sample as above: $\mathrm{mp} 208-209^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1740,1690$, 1665, 1640 and $1630 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$: this compound was a mixture of two rotational isomers, ratio, 2:1) $1.32(2 / 3 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, $\left.\mathrm{CHCH}_{3}\right), 1.45\left(1 / 3 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3 \mathrm{CHCH}_{3}\right), 1.98$ and 2.18 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H} \alpha), 3.17\left(2 / 3 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.20\left(1 / 3 \times 3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2,6-\mathrm{H} \beta), 3.53$ and 3.68 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 4.25 and 4.37 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6$, OCHAr), 4.76 and 5.08 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8, \mathrm{NCHAr}$), 5.08 (1 H , sept, J $6.3, \mathrm{OCHCH}_{3}$), $5.23(1 / 3 \times 1 \mathrm{H}$, br s, $5-\mathrm{H}), 5.27$ $(2 / 3 \times 1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,5-\mathrm{H}), 5.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.11(2 / 3 \times 1 \mathrm{H}$, s), $6.15(1 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.60(2 \mathrm{H}, \mathrm{br}$ s), $6.69(2 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.77$ ($1 / 3 \times 1 \mathrm{H}, \mathrm{s}$), 6.91-6.93 (3 H , m), 7.08-7.11 ($2 \mathrm{H}, \mathrm{m}$), 7.24-7.29 $(3 \mathrm{H}+2 / 3 \times 1 \mathrm{H}, \mathrm{m})$ and $7.60(1 / 3 \times 1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ (only major isomer) 9.3 (q, ArCH_{3}), 9.5 ($\mathrm{q}, \mathrm{ArCH}_{3}$), 22.2 (q , CHCH_{3}), 27.3 ($\mathrm{t}, \mathrm{C}-6$), $44.6\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), $46.4(\mathrm{~d}, \mathrm{C}-1)$, $52.8(\mathrm{~d}$, $\mathrm{C}-5), 59.5,60.1$ and 60.3 (each $\mathrm{q}, \mathrm{OCH}_{3}$), 70.2 (d, OCH), 74.7 ($\mathrm{t}, \mathrm{OCH}_{2}$) $101.1\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 106.7$ (d, $\mathrm{C}=\mathrm{CH}$), 107.0 (d), 113.9 (s), 122.7 (s), 125.8 (d), 126.8 (d), 127.4 (d), 127.7 (d), 128.3 (d), 136.3 (s), 138.0 (s), 143.0 (s), 145.7 (s), 150.4 (s), 151.5 (s), 152.8 (s, COO) and 168.2 (s, NCO); m/z 720 ($\mathrm{M}^{+}, 36 \%$), 631 (12), 630 (42), 629 (100), 544 (34), 543 (98), 278 (16), 235 (20), 234 (51), 204 (22) and 91 (32) (Found: C, 69.75; $\mathrm{H}, 6.25 ; \mathrm{N}, 3.71 . \mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}$ g requires $\mathrm{C}, 69.98 ; \mathrm{H}, 6.15 ; \mathrm{N}$, $3.89 \%)$.

I sopropyl (E)-3-benzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-4,5-methylenediox ybenzylidene)-9-methoxy-8-methyl-4-oxo-1,5-imino-3-benzazocine-11-carbox ylate 16d

A stirred solution of $14 \mathrm{~d}(331.0 \mathrm{mg}, 0.5 \mathrm{mmol})$ in dry TH F (20 cm^{3}) was cooled in ice-water, and lithium tri-tert-butoxyaluminium hydride ($762.8 \mathrm{mg}, 3.0 \mathrm{mmol}$) was added to it over 5 min . A fter continued stirring at the same temperature for 1 h , the reaction mixture was quenched by addition of water $\left(1 \mathrm{~cm}^{3}\right)$ and filtered through a Celite pad. The filtrate was concentrated in vacuo to give a crude diastereoisomeric mixture of the allylic alcohols $15 \mathrm{~d}(426 \mathrm{mg})$ (along with compound 13 d) which was used for the next step without further purification. A solution of the above mixture in formic acid ($12 \mathrm{~cm}^{3}$) was heated at $70^{\circ} \mathrm{C}$ for 2 h after which it was diluted with water ($30 \mathrm{~cm}^{3}$), and extracted with chloroform ($3 \times 30 \mathrm{~cm}^{3}$). The combined extracts were washed with 5% aqueous sodium hydrogen carbonate (30 cm^{3}), dried, and concentrated in vacuo to give a residue (426 mg). Chromatography of this on a silica gel (20 g) column with hexane-ethyl acetate ($4: 1$) as the eluent gave the title compound $\mathbf{1 6 d}(202.3 \mathrm{mg}, 63 \%)$ as a solid, recrystallization of which
from ethyl acetate-methanol gave the pure compound as colourless prisms. F urther elution with hexane-ethyl acetate ($3: 1$) as the eluent gave a mixture (41 mg) which showed two major spots on TLC $\left[R_{f}, 0.46\right.$ and 0.42 , hexane-ethyl acetate (3:1)]. This mixture was subjected to chromatography on preparative layer silica gel plates [M erck 5715, solvent, hexane-ethyl acetate (3:1)] and gave compound 27 ($19.4 \mathrm{mg}, 7.0 \%$) as a solid, recrystallization of which from ethyl acetate-ether gave the pure compound as colourless prisms and the (Z)-isomer 26d ($10.4 \mathrm{mg}, 3.2 \%$) as colourless amorphous powder. Finally, elution with ethyl acetate as eluent gave a solid, recrystallization of which from ethyl acetate afforded 13d ($15.4 \mathrm{mg}, 5.3 \%$) as prisms whose spectra were identical with those of an authentic sample as above

Compound 16d: mp $216-218{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1705,1665$, 1635 and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$: this compound was a mixture of two rotational isomers, ratio, $3: 1) 1.25(3 / 4 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$, $\left.\mathrm{CHCH}_{3}\right), 1.29\left(1 / 4 \times 6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{CHCH}_{3}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $3.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.8,6-\mathrm{H} \beta$), $3.21(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} \alpha), 3.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.78-4.85(3 \mathrm{H}, \mathrm{brs}, \mathrm{OCH} 2 \mathrm{Ar}$ and NCHAr), 4.97-5.11 (2 H , d like, OCH and NCHAr), $5.18(1 / 4 \times 1 \mathrm{H}$, br s, $5-\mathrm{H})$, $5.29(3 / 4 \times 1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5-\mathrm{H}), 5.82(1 \mathrm{H}, \mathrm{s}), 5.93(3 / 4 \times 2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.96\left(1 / 4 \times 2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.05(3 / 4 \times 1 \mathrm{H}, \mathrm{s}), 6.08$ ($1 / 4 \times 1 \mathrm{H}, \mathrm{s}), 6.37(1 \mathrm{H}, \mathrm{br}$ s), $6.53(1 \mathrm{H}, \mathrm{br} s), 6.69(2 \mathrm{H}, \mathrm{br}$ s), $6.88(1 \mathrm{H}, \mathrm{s}), 6.98-7.07(3 \mathrm{H}, \mathrm{m}), 7.12(2 \mathrm{H}, \mathrm{m})$ and $7.23-7.34$ $(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ (major isomer) 15.9 ($\mathrm{q}, \mathrm{ArCH}_{3}$), 22.1 (q , CHCH_{3}), $22.6\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 31.5(\mathrm{t}, \mathrm{C}-6), 44.7$ ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}$), 49.6 (d, C-1), 53.4 (d, C-5), $54.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 69.5(\mathrm{~d}, \mathrm{OCH}), 71.2$ ($\mathrm{t}, \mathrm{OCH}_{2}$), 96.6 (d), $101.4\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 105.4(\mathrm{~d}, \mathrm{C}=\mathrm{CH}), 107.8$ (d), 109.9 (d), 117.6 (s), 123.5 (s), 126.1 (d), 126.7 (d), 128.2 (d), 131.0 (d), 132.3 (s), 136.0 (s), 137.9 (s), 141.6 (s), 147.5 (s), 152.1 (s), 153.0 (s, COO), 156.4 (s) and 168.6 (s, NCO); (minor isomer) 14.1 (q, ArCH_{3}), 22.3 ($\mathrm{q}, \mathrm{CHCH}_{3}$), $22.6\left(\mathrm{q}, \mathrm{CHCH}_{3}\right)$, $31.3(\mathrm{t}, \mathrm{C}-6), 44.7\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), $49.1(\mathrm{~d}, \mathrm{C}-1)$, $53.2(\mathrm{~d}, \mathrm{C}-5), 54.8$ $\left(\mathrm{q}, \mathrm{OCH}_{3}\right) 69.4(\mathrm{~d}, \mathrm{OCH}), 70.1\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 96.4(\mathrm{~d}), 101.4$ (t, $\mathrm{OCH}_{2} \mathrm{O}$), 105.4 ($\mathrm{d}, \mathrm{C}=\mathrm{CH}$), 108.1 (d), 110.4 (d), 117.4 (s), 123.0 (s), 126.9 (d), 127.2 (d), 128.5 (d), 130.8 (d), 132.4 (s), 136.0 (s), 137.9 (s), 141.6 (s), 147.5 (s), 151.9 (s), 153.2 (s, COO), 156.4 (s) and 168.6 (s, N CO); m/z 646 (${ }^{+}, 55 \%$), 556 (18), 555 (32), 513 (16), 470 (26), 469 (82), 268 (14), 266 (15), 260 (14), 220 (11), 219 (11), 218 (32), 176 (16), 175 (20), 174 (100), 159 (14), 91 (54) and 43 (16) (Found: C, 72.56; H, 5.94; N, 4.32. $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, $72.43 ; \mathrm{H}, 5.92 ; \mathrm{N}, 4.33 \%$).
Compound 27: mp 180-181.5 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1705,1655$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$ at $\left.55^{\circ} \mathrm{C}\right) 1.26\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.9, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.5, \mathrm{ArCHC}), 3.11-3.18$ (2 H, br s, ArCHC and ArCHCH), 3.48 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCHCH}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$) 4.42 and 4.50 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{ArCHN}$) 4.99 (1 H , sept, J $5.9, \mathrm{OCH}$), 4.99 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArCHCH}$), 5.32 (1 H, br s, CH), $5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.30,6.59$ and 6.62 (each 1 $\mathrm{H}, \mathrm{s}), 6.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6), 6.91(1 \mathrm{H}, \mathrm{s})$ and $7.00-7.11(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right.$ at $25^{\circ} \mathrm{C}$) (major isomer) 15.9 ($\mathrm{q}, \mathrm{ArCH}_{3}$), 22.1 (q , CHCH_{3}) 31.1 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{CH}$), 40.8 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}$), 44.1 (t , $\mathrm{ArCH}_{2} \mathrm{~N}$), $53.7(\mathrm{~d}, \mathrm{CH}), 55.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.0\left(\mathrm{~d}, \mathrm{ArCH}_{2} \mathrm{CH}\right)$, 70.0 (d, OCH), 92.8 (d), 100.8 (s), 101.3 (t, $\mathrm{OCH}_{2} \mathrm{O}$), 105.3 (d), 112.1 (d), 115.8 (s), 124.3 (s), 126.6 (d), 126.9 (d), 128.0 (d), 130.6 (d), 137.8 (s), 142.6 (d), 147.8 (s), 151.3 (s), 153.9 (s), 155.9 (s) and 168.4 (s, NCO); (minor isomer) 15.9 ($\mathrm{q}, \mathrm{ArCH}_{3}$), 22.2 (q , CHCH_{3}), 30.7 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{CH}$), $40.5\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{C}\right), 43.9$ (t , $\mathrm{ArCH}_{2} \mathrm{~N}$), $52.9(\mathrm{~d}, \mathrm{CH}), 55.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.9\left(\mathrm{~d}, \mathrm{ArCH}_{2} \mathrm{CH}\right)$, 69.9 (d, OCH), 92.9 (d), 100.5 (s), 101.3 (t, $0 \mathrm{CH}_{2} \mathrm{O}$), 105.0 (d), 111.9 (d), 115.7 (s), 124.9 (s), 126.6 (d), 127.0 (d), 128.3 (d), 130.8 (d), 137.8 (s), 142.4 (s), 147.9 (s), 151.3 (s), 153.1 (s), 155.9 (s) and 168.1 (s, NCO); m/z 556 ($\mathrm{M}^{+}, 100 \%$), 465 (32), 380 (13), 379 (48), 268 (24), 261 (20), 246 (31), 220 (11), 219 (22), 218 (15), 175 (11), 174 (67) and 91 (23) (Found: C, 68.9; H , 5.86; N, 4.92. $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 69.05 ; \mathrm{H}, 5.8 ; \mathrm{N}, 5.03 \%$).

Compound 26d: amorphous powder, $v_{\max }\left(\mathrm{CHCl}_{3} / / \mathrm{cm}^{-1} 1710\right.$, 1690, 1675 and 1615; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.85$ and 0.97 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.6.3, \mathrm{CHCH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2$ and 1.7 ,
$6-\mathrm{H} \beta), 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $5.6,6-\mathrm{H} \alpha$), 4.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{NCHAr}), 4.73$ (1 H , sept, J $6.3, \mathrm{OCH}$), 4.95 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}$), $5.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.5, \mathrm{NCHAr}), 5.44(1 \mathrm{H}, \mathrm{dd}$, J 5.6 and $1.7,5-\mathrm{H}), 5.62(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0$, OCH O), $5.74(1 \mathrm{H}, \mathrm{s}), 5.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0,0 \mathrm{OH} 0), 6.47(1 \mathrm{H}, \mathrm{s})$ $6.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9), 6.89(1 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}, \mathrm{s}), 6.94-7.07(3 \mathrm{H}$, m), $7.19(1 \mathrm{H}, \mathrm{s})$ and $7.20-7.30(5 \mathrm{H}, \mathrm{m})$; m/z $646\left(\mathrm{M}^{+}, 94 \%\right)$, 557 (21), 556 (24), 555 (44), 513 (22), 470 (33), 469 (100), 268 (14), 266 (15), 260 (12), 248 (21), 219 (10), 218 (30), 176 (13), 175 (18), 174 (82), 159 (12), 91 (48) and 43 (10) (Found: M^{+}, $646.2677 . \mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{M}, 646.2679$).

I sopropyl (E)-3-benzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)-9-methoxy-8-methyl-4-oxo-1,5-imino-3-benzazocine-11-carboxylate 16e
M ethod A. A stirred solution of $14 \mathrm{e}(405.6 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry TH F ($25 \mathrm{~cm}^{3}$) was cooled in ice-water, and lithium tri-tertbutoxyaluminium hydride ($915 \mathrm{mg}, 3.6 \mathrm{mmol}$) was added to it over 5 min . A fter continued stirring at the sametemperature for 1 h , the reaction mixture was quenched by addition of water ($1 \mathrm{~cm}^{3}$) and filtered through a Celite pad. The filtrate was concentrated in vacuo to give a crude diastereoisomeric mixture of the allylic alcohols $\mathbf{1 5 e}(498 \mathrm{mg}$) (along with compound 13e) which was used for the next step without further purification. A solution of the above mixture in formic acid ($12 \mathrm{~cm}^{3}$) was heated at $70^{\circ} \mathrm{C}$ for 2 h after which it was diluted with water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with chloroform ($3 \times 30 \mathrm{~cm}^{3}$). The combined extracts were washed with 5% aqueous sodium hydrogen carbonate ($30 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (431 mg). Chromatography of this on a silica gel (40 g) column with hexane-ethyl acetate ($3: 1-2: 1$) as the eluent gave a mixture (187 mg) which showed three major spots on TLC [$R_{f}, 0.30,0.25$ and 0.13 , hexane-ethyl acetate ($\left.\left.2: 1\right)\right]$. This mixture when subjected to chromatography on preparative layer silica gel plates [M erck 5715, solvent, hexane-ethyl acetate (3:1)] gave the title compound $\mathbf{1 6 e}(56.4 \mathrm{mg}, 14.2 \%$, as colourless amorphous powder), the (Z)-isomer 26e ($33.2 \mathrm{mg}, 8.4 \%$, as a solid, recrystallized from ethyl acetate-ether) and compound $28(34.5 \mathrm{mg}, 8.7 \%)$ as colourless amorphous powder. Finally, elution with ethyl acetate as an eluent gave the compound as a solid, recrystallization of which from ethyl acetate gave 13e (28.5 $\mathrm{mg}, 8.1 \%$) as prisms whose spectra were identical with those of an authentic sample as above.
M ethod B. Reduction of 14 e ($405.6 \mathrm{mg}, 0.6 \mathrm{mmol}$) with lithium tri-tert-butoxyaluminium hydride ($915 \mathrm{mg}, 3.6 \mathrm{mmol}$) as described above afforded the allylic alcohol $15 \mathrm{e}(422 \mathrm{mg})$. A solution of the above mixture and triethylamine ($0.837 \mathrm{~cm}^{3}, 6$ mmol) in dichloromethane ($20 \mathrm{~cm}^{3}$) was cooled in ice-water, and methanesulfonyl chloride ($0.465 \mathrm{~cm}^{3}, 6 \mathrm{mmol}$) was added dropwise to it over 10 min . The mixture was heated under reflux for 38 h after which it was washed with 1 m aqueous hydrochloric acid $\left(20 \mathrm{~cm}^{3}\right)$ and then with water ($10 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue (531 mg). Chromatography of this on a silica gel (40 g) column with hexane-ethyl acetate ($3: 1-2: 1$) as the eluent gave a mixture (86 mg) which showed two major spots on TLC $\left[R_{f}, 0.30\right.$ and 0.13 , hexaneethyl acetate $(2: 1)$]. This mixture was subjected to chromatography on preparative layer silica gel plates [M erck 5715, solvent, hexane-ethyl acetate (3:1)] and gave the title compound $\mathbf{1 6 e}$ ($27.9 \mathrm{mg}, 7.0 \%$, as a colourless amorphous powder) and compound 28 ($40.9 \mathrm{mg}, 10.3 \%$) as colourless amorphous powder. Finally, elution with ethyl acetate as an eluent gave a solid, recrystallization of which from ethyl acetate afforded 13e ($38.9 \mathrm{mg}, 11.0 \%$).
M ethod C. Reduction of $\mathbf{1 4 e}$ ($405.6 \mathrm{mg}, 0.6 \mathrm{mmol}$) with lithium tri-tert-butoxyaluminium hydride ($915 \mathrm{mg}, 3.6 \mathrm{mmol}$) as described above afforded the allylic alcohol 15 e (427 mg). M ethanesulfonic anhydride ($209 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to a stirred solution of the above mixture in dichloromethane (10 cm^{3}), which was then stirred at room temperature for 72 h . It
was then diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with 5% aqueous sodium hydrogen carbonate $\left(20 \mathrm{~cm}^{3}\right)$, dried, and concentrated in vacuo to give a residue (422 mg). Chromatography of this on a silica gel (40 g) column with hexane-ethyl acetate ($2: 1$) as the eluent gave the title compound 16 e ($141.4 \mathrm{mg}, 35.7 \%$) as a solid, recrystallization of which from ethyl acetate gave the pure compound as pale yellow prisms. F urther elution with ethyl acetate-hexane (2:1) gave a solid which was recrystallized from methanol to afford compound 29 ($11.9 \mathrm{mg}, 5.2 \%$) and elution with ethyl acetate as the eluent gave 13 e ($41.0 \mathrm{mg}, 11.6 \%$) as prisms.
Compound 16e: amorphous powder, $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1702$, 1692, 1635 and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$: this compound was a mixture of two rotational isomers, ratio $2: 1) 1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, CHCH_{3}) , $1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}\right), 2.06$ and 2.16 (each H, s, CH_{3}), 3.08 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.2,6-\mathrm{H} \beta$), 3.22-3.28 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} \alpha$), $3.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.82$ and 4.96 (each 1 H, d, J 16.5, NCHAr), 5.02 (1 H, sept, J 6.3, OCH), 5.21 ($1 / 3 \times 1 \mathrm{H}, \mathrm{br}$ s, $5-\mathrm{H}$), $5.28(2 / 3 \times 1 \mathrm{H}, \mathrm{br}$ s, $5-\mathrm{H}), 5.78-5.96$ (1 $\mathrm{H}, \mathrm{br}), 5.97\left(2 / 3 \times 2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.98\left(1 / 3 \times 2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, $6.19(1 \mathrm{H}, \mathrm{br} s), 6.24(2 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.29(1 / 3 \times 1 \mathrm{H}, \mathrm{s}), 6.62-6.64$ ($2 \mathrm{H}, \mathrm{br} \mathrm{d}$), 6.89-7.15 ($5 \mathrm{H}, \mathrm{m}$) and 7.26-7.37 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ (major isomer) 9.6 and 15.9 ($\mathrm{q}, \mathrm{ArCH}_{3}$), 22.2 (q , CHCH_{3}), $22.2\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 31.1(\mathrm{t}, \mathrm{C}-6), 44.6\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right.$), 49.9 (d, C-1), $53.4(\mathrm{~d}, \mathrm{C}-5), 55.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 70.1(\mathrm{~d}, \mathrm{OCH})$, 74.9 ($\mathrm{t}, \mathrm{OCH}_{2}$), 101.3 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}$), 105.8 (d, $\mathrm{C}=\mathrm{CH}$), 107.2 (d), 108.1 (d), 114.0 (s), 121.5 (s), 123.6 (s), 125.8 (d), 126.8 (d), 127.5 (d), 127.9 (d), 128.3 (d), 128.4 (d), 131.2 (d), 132.3 (s), 135.9 (s), 137.1 (s), 138.8 (s), 143.2 (s), 146.3 (s), 151.8 (s), 153.0 (s, COO), 156.5 (s) and 168.8 (s, NCO); (minor isomer) 9.6 and 15.9 (q, ArCH_{3}), $22.0\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 22.0\left(\mathrm{q}, \mathrm{CHCH}_{3}\right)$, 31.6 (t , $\mathrm{C}-6), 44.6$ ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}$), 49.3 ($\mathrm{d}, \mathrm{C}-1$), 54.2 ($\mathrm{d}, \mathrm{C}-5$), 55.1 (q , $\left.\mathrm{OCH}_{3}\right), 69.6(\mathrm{~d}, \mathrm{OCH}), 74.9\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 101.3\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 105.7$ (d, C=CH), 107.4 (d), 108.3 (d), 114.0 (s), 121.5 (s), 123.6 (s), 125.8 (d), 126.8 (d), 127.5 (d), 127.9 (d), 128.3 (d), 128.4 (d), 131.0 (d), 132.3 (s), 135.9 (s), 137.2 (s), 137.3 (s), 143.1 (s), 146.3 (s), 151.8 (s), 153.1 (s, COO), 156.4 (s) and 168.8 (s, NCO); $\mathrm{m} / \mathrm{z} 660$ (${ }^{+}$, 57\%), 570 (46), 569 (85), 484 (32), 483 (97), 282 (12), 260 (12), 218 (23), 175 (22), 174 (100), 159 (12), 91 (59) and 43 (19) (Found: $\mathrm{M}^{+}, 660.2837 . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires M , 660.2836

Compound 26e: mp $190-191.5^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680$, 1670 and 1615; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.96$ and 1.07 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3$, CHCH_{3}), $2.17(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArCH}), 3.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and 2.0 , $6-\mathrm{H} \beta), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $5.9,6-\mathrm{H} \alpha)$, 4.53 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8, \mathrm{NCHAr}), 4.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.81(1 \mathrm{H}$, sept, J 6.3, OCH), 5.06 (1 H, d, J 15.8, N CHAr), 5.45 (1 H , s, 1-H), $5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$ and $2.0,5-\mathrm{H}), 5.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0$, OCH O), $5.81(1 \mathrm{H}, \mathrm{s}), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0, \mathrm{OCHO}), 6.62(2 \mathrm{H}, \mathrm{d}$, J 6.9), $6.95(1 \mathrm{H}, \mathrm{s}), 6.99-7.10(3 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{s}), 7.30(1 \mathrm{H}$, s) and $7.35(5 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 660\left(\mathrm{M}^{+}, 30 \%\right), 570(45), 569(100), 174$ (82) and 91 (18) (Found: C, $72.64 ; \mathrm{H}, 5.85 ; \mathrm{N}, 4.17 . \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}{ }_{7}$ requires C, 72.71; H , 6.1; N , 4.24\%).
Compound 28: mp $184.5-185^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1715$ and $1660 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.08$ and 1.18 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.03 and 2.17 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}$), 2.75-2.95 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}$ $\mathrm{C}=\mathrm{C}$ and $\mathrm{ArCH}_{2} \mathrm{CH}$), $3.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 21.8, \mathrm{ArCHC}=\mathrm{C}), 3.69$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.79\left(4 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.86(1 \mathrm{H}$, sept, J 6.3, OCH), 5.15 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}$), $5.96\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}{ }_{2} \mathrm{O}\right)$, $6.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3), 6.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3$ and 2.0) and 7.21-7.38 ($10 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 15.7(\mathrm{q}$, ArCH_{3}), 21.6 ($\mathrm{q}, \mathrm{CHCH}_{3}$), $21.9\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 31.1$ (t), 36.3 (t), $46.7\left(q, \mathrm{NCH}_{3}\right), 55.3\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 60.3(\mathrm{~d}, \mathrm{CH}), 70.2(\mathrm{~d}, \mathrm{OCH})$, 74.7 (t, OCH ${ }_{2} \mathrm{Ar}$), 100.9 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}$), 109.1 (s$), 109.7$ (d), 118.6 (s), 119.9 (s), 122.2 (s), 126.0 (s), $127.6(2 \times \mathrm{d}), 127.7$ (d), 127.8 $(2 \times \mathrm{d}), 127.9(\mathrm{~s}), 128.1(2 \times \mathrm{d}), 128.5(2 \times \mathrm{d}), 128.8(2 \times \mathrm{d})$, 131.2 (s), 131.9 (d), 135.0 (s), 136.7 (s), 137.8 (s), 147.0 (s), 147.7 (s), 156.6 (s) and 167.1 (s); m/z $660\left(\mathrm{M}^{+}, 100 \%\right), 483$ (12), 481 (13), 440 (19), 439 (60), 349 (10), 348 (18), 347 (15), 257 (10),

135 (71) and 91 (57) (Found: C, 72.66; H, 6.17; N, 4.18 $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}$ 7 requires $\mathrm{C}, 72.71 ; \mathrm{H}, 6.1 ; \mathrm{N}, 4.24 \%$).

Compound 29: mp 175-176 ${ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3300,3250$, 1685 and $1610 ; \delta_{\mathrm{H}}\left[\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}(3: 1)\right.$, at $\left.50^{\circ} \mathrm{C}\right] 1.17[6 \mathrm{H}, \mathrm{d}$, J 5.9, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.92(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and $7.6, \mathrm{CHCHAr}), 3.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.5$ and $5.9, \mathrm{CHCHAr}$), $3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.26-4.42\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{Ar}\right.$ and $\mathrm{CHCH}_{2} \mathrm{Ar}$), $4.81(1 \mathrm{H}$, sept, J 5.9, OCH), 5.18 and 6.15 (each 1 H, br s, NH), 6.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$), $6.95(2 \mathrm{H}, \mathrm{br}$) , $7.07(2 \mathrm{H}, \mathrm{br}$ s) and $7.23(3 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{c}}\left[\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}(3: 1)\right.$, at $\left.50^{\circ} \mathrm{C}\right] 15.8$ (q, ArCH_{3}), $21.8\left(\mathrm{q}, \mathrm{CHCH}_{3}\right), 37.8\left(\mathrm{t}, \mathrm{CHCH}_{2} \mathrm{Ar}\right), 43.2$ (t , $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.3$ (d, CHCH 2 Ar$), 68.8(\mathrm{~d}, \mathrm{OCH})$, 110.2 (d), 126.7 (s), 127.2 (d), 127.4 (d), 127.4 (d), 128.1 (s), 128.4 (d), 131.5 (d), 137.6 (s), 156.8 (s, NCOO) and 171.5 (s, NCO); m/z 384 (${ }^{+}$, 4\%), 282 (22), 281 (100), 176 (12), 175 (11), 164 (11), 148 (30), 136 (11), 135 (77), 106 (4) and 91 (21) (Found: C, 68.66; H, 7.35; N, 7.24. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 68.72; H, 7.34; N, 7.29\%).

G eneral procedure for the reaction of isopropyl (E)-3-benzyl-2-arylidene-4-ox0-1,5-imino-3-benzazocine-11-carboxylate 16 with sodium methoxide

A stirred solution of $16(0.4 \mathrm{mmol})$ in dry methanol $\left(8.0 \mathrm{~cm}^{3}\right)$ was cooled in ice-water, and a methanol solution of sodium methoxide ($28 \%, 3.0 \mathrm{~cm}^{3}$) was added dropwise to it over 5 min . This mixture was then heated under reflux for 8 h after which it was diluted with water ($20 \mathrm{~cm}^{3}$), acidified with 1 m aqueous hydrochloric acid, made alkaline with 5% aqueous sodium hydrogen carbonate and extracted with chloroform (3×20 cm^{3}). The combined extracts were washed with water ($20 \mathrm{~cm}^{3}$), dried, and concentrated in vacuo to give a residue, which was purified by column chromatography on silica gel to give the corresponding benzazocine derivative 30 .
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-methox y-3-methyl-4,5-methylenediox ybenzylidene)-7,9,10-trimethox y-8-methyl-1,5-imino-3-benzazocin-4-one 30b. Colourless amorphous powder ($210.9 \mathrm{mg}, 94.5 \%$ yield); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3310,1655,1635$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.13$ and 2.19 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 2.24 (1 H, br s, N H), 3.02 and 3.05 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.06(1 \mathrm{H}$, dd, J 17.2 and $6.3,6-\mathrm{H} \alpha$), $3.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.2$ and $1.3,6-\mathrm{H} \beta$), 3.50 and 3.70 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.3$ and $1.3,5-\mathrm{H}$), 4.53 (1 H , d, J 16.2, N CHAr), 5.46 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.63 ($1 \mathrm{H}, \mathrm{d}$, J 16.2, N CHAr), $5.86(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}$), 5.91 and 5.92 (each 1 H , diffuse s, OCHO), $6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.68-6.71(2 \mathrm{H}, \mathrm{m})$ and 7.02-7.05 (3 H, m); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.2\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right)$ 29.5 ($\mathrm{t}, \mathrm{C}-6$), 43.5 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}$), 46.6 ($\mathrm{d}, \mathrm{C}-1$), 53.8 ($\mathrm{d}, \mathrm{C}-5$), 58.9, 59.9, 59.9 and 60.1 (each q, OCH_{3}), 101.1 (t, OCH_{2}), 105.6 (d, C=CH), 106.3 (d), 113.5 (s), 122.4 (s), 122.8 (d), 124.5 (s), 126.3 (d), 126.4 (d), 126.6 (d), 128.3 (d), 136.8 (s), 138.4 (s), 142.6 (s), 145.4 (s), 146.7 (s), 149.9 (s), 151.8 (s), 152.6 (s) and 170.5 (s, NCO); m/z 558 (M ${ }^{+}, 100 \%$), 543 (19), 527 (21), 297 (12), 235 (22) and 234 (91) (Found: $\mathrm{M}^{+}, 558.2361 . \mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{M}, 558.2368$).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenediox ybenzylidene)-7,9,10-trimethox y-8-methyl-1,5-imino-3-benzazocin-4-one 30c Colourless prisms (ethyl acetate-ether) ($214.3 \mathrm{mg}, 84.5 \%$ yield), $\mathrm{mp} 159-160^{\circ} \mathrm{C}$; $v_{\text {max }}{ }^{-}$ $(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3320,1660,1635$ and $1625 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.10(1 \mathrm{H}, \mathrm{br}$ s, NH), 2.16 and 2.17 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 2.94 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5$, 5.9, 6-H a), $3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.5$ and 1.7 , $6-\mathrm{H} \beta)$, 3.57 and 3.64 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9$, $1.7,5-\mathrm{H}), 4.36$ and 4.66 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 10.9, OCHAr), 4.71 (1 H, d, J 15.8, N CHAr), 5.14 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8$, NCHAr), $5.77(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH})$) $5.94\left(2 \mathrm{H}\right.$, diffuse $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 6.73-6.76 (3H, m), 7.02-7.04 (3 H, m), 7.26-7.29 (2 H, m) and 7.36-7.40 (3 H, m); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.6\left(\mathrm{q}, \mathrm{ArCH}_{3}\right)$, 29.5 (t, C-6), 44.2 (t, A rCH ${ }_{2}$) , 46.9 (d, C-1), 53.5 (d, C-5), 59.0, 60.0 and 60.0 (each $\mathrm{q}, \mathrm{OCH}_{3}$), $75.2\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 101.0(\mathrm{t}$, $0 \mathrm{CH}_{2} \mathrm{O}$), 104.2 (d, C=CH), 107.4 (d), 113.7 (s), 122.6 (s), 123.0 (s), 124.3 (s), 126.3 (d), 126.4 (d), 126.7 (d), 128.1 (d), 128.3 (d),
128.3 (d), 128.7 (d), 136.8 (s), 137.4 (s), 140.0 (s), 142.9 (s), 145.4 (s), 146.8 (s), $149.8(\mathrm{~s}), 150.0(\mathrm{~s}), 152.5(\mathrm{~s})$ and 170.6 (s, NCO); m/z 634 ($\mathrm{M}^{+}, 17 \%$), 544 (36), 543 (100), 285 (18), 234 (58), 204 (21), 190 (12) and 91 (25) (Found: C, 71.96; H, 6.2; N, 4.3. $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, 71.9; H, 6.03 ; $\mathrm{N}, 4.14 \%$).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-4,5-methylenedioxybenzylidene)-9-methox y-8-methyl-1,5-imino-3-benzazocin-4-one 30d. Colourless amorphous powder (215.6 $\mathrm{mg}, 85.0 \%$ yield); $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3330,1670$ and 1640 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.93(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.99(1 \mathrm{H}$, dd, J 16.2 and $1.7,6-\mathrm{H} \beta$), $3.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $5.9,6-\mathrm{H} \alpha$), $3.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9,1.7,5-\mathrm{H}), 4.83(1 \mathrm{H}, \mathrm{d}$, J 15.8, N CHAr), 4.84 and 4.90 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6,0 \mathrm{CHAr}$), 4.96 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.8, \mathrm{~N}$ CHAr), $5.51(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}$), $5.92\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.03,6.49$ and 6.61 (each $1 \mathrm{H}, \mathrm{s}$, ArH) , 6.71-6.74 ($2 \mathrm{H}, \mathrm{m}$), $6.84(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.03-7.12(3 \mathrm{H}$, $\mathrm{m})$ and $7.27-7.40(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 15.9\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 32.7(\mathrm{t}$, $\mathrm{C}-6$), 44.4 (t, $\mathrm{ArCH}_{2} \mathrm{~N}$), 50.7 ($d, \mathrm{C}-1$), 54.3 ($d, \mathrm{C}-5$), 55.0 (q , OCH_{3}), $71.8\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 97.4(\mathrm{~d}), 101.4\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 102.6(\mathrm{~d}$, $\mathrm{C}=\mathrm{CH}$), 108.4 (d), 110.3 (d), 118.3 (s$), 124.0$ (s$), 126.1$ (s$), 126.7$ (d), 127.5 (d), 128.2 (d), 128.7 (d), 130.9 (d), 133.3 (s), 136.4 (s), 141.8 (s), 142.1 (s), 147.3 (s), 150.8 (s), 156.1 (s) and 170.8 (s, NCO); m/z 560 (${ }^{+}$, 37%), 470 (24), 469 (21), 268 (16), 176 (11), 175 (20), 174 (100), 159 (11) and 91 (34) (Found: M ${ }^{+}, 560.2315$. $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{M}, 560.2311$).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)-9-methox y-8-methyl-1,5-imino-3-benzazocin-4-one 30e. Colourless amorphous powder (164.3 $\mathrm{mg}, 71.7 \%$ yield); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3330,1670$ and 1640 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.14$ and 2.18 (each $3 \mathrm{H}, \mathrm{s}$, CH_{3}), 2.95 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $1.0,6-\mathrm{H} \beta$), $3.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and 5.9, $6-\mathrm{H} \alpha), 3.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.9,1.0$, $5-\mathrm{H}$), 4.45 and 4.65 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6,0 \mathrm{OHAr}), 4.81(1 \mathrm{H}, \mathrm{d}$, J 16.2, OCHAr), 4.91 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.15 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2$, NCHAr), $5.53(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.94(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 5.99(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.31(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.71(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6), 6.83(1 \mathrm{H}, \mathrm{s}$, ArH), 7.02-7.10 (3 H, m), 7.26-7.28 ($2 \mathrm{H}, \mathrm{m}$) and 7.34-7.38 (3 $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.6\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 15.9\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 32.8(\mathrm{t}$, $\mathrm{C}-6$), 44.2 ($\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}$), 50.8 ($\mathrm{d}, \mathrm{C}-1$), 54.2 ($\mathrm{d}, \mathrm{C}-5$), 55.0 (q , OCH_{3}), $75.0\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 101.2\left(\mathrm{t}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{O}\right), 102.2(\mathrm{~d}, \mathrm{C}=\mathrm{CH})$, 107.1 (d), 108.5 (d), 114.4 (s), 122.2 (s), 124.0 (s), 126.0 (d), 126.4 (d), 126.8 (d), 128.0 (d), 128.2 (d), 128.6 (d), 130.9 (d), 133.3 (s), 136.4 (s), 137.3 (s), 142.3 (s), 143.2 (s), 145.8 (s), 149.5 (s), 156.0 (s) and 171.0 (s, NCO); m/z 574 (M ${ }^{+}, 37 \%$), 484 (39), 483 (100), 282 (12), 190 (11), 175 (15), 174 (74) and 91 (29) (Found: $\mathrm{M}^{+}, 574.2466 . \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires M , 574.2468).

(Z)-3-B enzyl-1,2,3,4,5,6-hex ahydro-2-(2-benzylox y-4,5-

 methylenedioxybenzylidene)-9-methox y-8-methyl-1,5-imino-3-benzazocin-4-one 31Treatment of $(Z)-\mathbf{2 6 d}$ ($32.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) with sodium methoxide ($28 \%, 0.5 \mathrm{~cm}^{3}$) in dry methanol ($2.0 \mathrm{~cm}^{3}$) as described above gave a residue, which was purified by column chromatography on silica gel with dichloromethane-methanol (100:1) as the eluent to afford the corresponding benzazocine derivative 31 $(25.2 \mathrm{mg}, 90 \%)$ as a solid. Recrystallization of this from ether gave colourless needles, mp $166.5-168^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3290,1665,1635$ and $1615 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.83(1 \mathrm{H}, \operatorname{br~s}, \mathrm{NH}), 2.17$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.8$ and 1.7, 6-H β), $3.16(1 \mathrm{H}$, dd, J 15.8 and $5.6,5-\mathrm{H} \alpha$), $3.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.84(1 \mathrm{H}, \mathrm{dd}$, J 5.6, 1.7, 5-H), 3.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8, \mathrm{NCHAr}$), $4.39(1 \mathrm{H}, \mathrm{s}$, 1-H), 4.84 and 4.91 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0,0 \mathrm{CHAr}), 5.39(1 \mathrm{H}, \mathrm{d}$, J 14.8, N CHAr), $5.84(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right)$, 6.06-6.09 ($2 \mathrm{H}, \mathrm{m}$), 6.13 and 6.62 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), 6.61-6.68 ($2 \mathrm{H}, \mathrm{m}$) , 6.71 and 6.82 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.89-6.95(1 \mathrm{H}, \mathrm{t}$ like) and $7.35(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 16.0\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 34.5$ (t, $\mathrm{C}-6), 45.2\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 54.5(\mathrm{~d}, \mathrm{C}-1), 54.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 59.2$ (d, C-5), $71.3\left(\mathrm{t}, \mathrm{OCH}_{2}\right), 95.8$ (d), $101.5\left(\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}\right), 105.4$ (d, C=CH), 108.6 (d), 110.0 (d), 117.3 (s), 124.3 (s), 126.2 (d),
127.2 (d), 127.4 (d), 127.5 (d), 128.1 (d), 128.5 (d), 130.9 (d), 131.7 (s), 136.2 (s), 136.8 (s), 141.3 (s), 147.8 (s), 151.7 (s), 156.0 (s) and 170.2 (s, NCO); m/z $560\left(\mathrm{M}^{+}, 54 \%\right), 470(35)$, 469 (98), 268 (17), 175 (21), 174 (100) and 91 (34) (Found: C, 74.69; H, 5.87; N , 4.9. $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 74.98; H, 5.75; N, 5.0\%).

G eneral procedure for methylation of (\mathbf{E})-3-benzyl-2-arylidene-1,5-imino-3-benzazocin-4-one 30

Formaldehyde (37% wt $\%$ solution water, $0.18 \mathrm{~cm}^{3}$) was added to a stirred solution of the amine $\mathbf{3 0}(0.2 \mathrm{mmol})$ in formic acid $\left(0.2 \mathrm{~cm}^{3}\right)$ at $50^{\circ} \mathrm{C}$. A fter being stirred for 1 h at $70^{\circ} \mathrm{C}$, the reaction mixture was poured into water ($20 \mathrm{~cm}^{3}$), and extracted with chloroform ($3 \times 20 \mathrm{~cm}{ }^{3}$). The combined extracts were washed with 5% aqueous sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a residue. This was purified by column chromatography on silica gel to give the corresponding N -methyl derivative 32 .
(E) -3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-methox y-3-methyl-4,5-methylenediox ybenzylidene)-7,9,10-trimethox y-8,11-
dimethyl-1,5-imino-3-benzazocin-4-one 32b. Colourless prisms (ethyl acetate-ether) ($113.2 \mathrm{mg}, 99.0 \%$ yield), $\mathrm{mp} 83-84^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1655,1630$ and $1615 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.12$ and 2.20 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.91$ and 3.05 (each 3 H , $\mathrm{s}, \mathrm{OCH}_{3}$), $3.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.8$ and $5.3,6-\mathrm{H} \alpha$), $3.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $16.8,6-\mathrm{H} \beta$), 3.47 and 3.69 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 5.3, 5-H), 4.56(1 H, d, J 16.2, N CH Ar), 5.33 ($1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 5.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{NCHAr}), 5.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.13(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CH}), 6.67-6.69(2 \mathrm{H}, \mathrm{m}), 6.81(1 \mathrm{H}, \mathrm{s})$ and $7.02-7.04(3 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.0\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.2\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 28.2(\mathrm{t}, \mathrm{C}-6)$, $41.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 43.1\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 52.2(\mathrm{~d}, \mathrm{C}-1), 59.0,59.6,59.8$ and 60.0 (each $\mathrm{q}, \mathrm{OCH}_{3}$), $60.5(\mathrm{~d}, \mathrm{C}-5), 101.0\left(\mathrm{t}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{O}\right), 105.1$ (d, C=CH), 109.0 (d), 113.4 (s), 122.0 (s), 122.9 (d), 124.4 (s), 126.1 (d), 126.5 (d), 128.3 (d), 134.4 (s), 136.8 (s), 142.4 (s), 145.3 (s), 146.7 (s), 149.9 (s), 152.0 (s), 152.4 (s) and $169.8(\mathrm{~s}$, NCO); m/z 572 (M ${ }^{+}, 57 \%$), 249 (24), 248 (100) and 218 (21) (Found: C, 68.82; H, 6.61; N, 4.68. $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C , 69.21; H, 6.34; N, 4.89\%).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenediox ybenzylidene)-7,9,10-trimethox y-8,11-dimethyl-1,5-imino-3-benzazocin-4-one 32c. Colourless prisms (acetone-ether) ($128.4 \mathrm{mg}, 99.1 \%$ yield), mp $158-159^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1670,1640$ and $1625 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.02$ and 2.18 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.20\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}_{2}\right), 3.53$ and 3.69 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.84 (1 H , slike, $5-\mathrm{H}$), 4.37 and 4.40 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.9,0 \mathrm{CH}$ Ar), 4.88 and 4.99 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{NCHAr}$), $5.40(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 5.93$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.21(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 6.71-6.74(2 \mathrm{H}, \mathrm{m}), 6.87$ ($1 \mathrm{H}, \mathrm{s}$), 6.96-6.98 (3H, m), 7.11-7.14 ($2 \mathrm{H}, \mathrm{m}$) and 7.26-7.33 (3 $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 9.3\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 9.5\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 27.9(\mathrm{t}, \mathrm{C}-6)$, $41.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 44.6\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 52.2$ (d, C-1), 59.3, 60.0 and 60.2 (each q, OCH_{3}), 60.5 (d, C-5), 74.6 (t, OCH_{2}) 101.0 (t, $\mathrm{OCH}_{2} \mathrm{O}$), 105.4 (d, $\mathrm{C}=\mathrm{CH}$), 108.6 (d), 113.9 (s$), 122.2$ (s), 123.1 (s), 124.7 (s), 125.9 (d), 126.3 (s), 126.6 (d), 127.4 (d), 127.7 (d), 128.3 (d), 135.7 (s), 136.8 (s), 138.0 (s), 142.6 (s), 145.4 (s), 146.8 (s), 150.1 (s), 151.3 (s), 152.6 (s) and $169.8(\mathrm{~s}, \mathrm{NCO}) ; \mathrm{m} / \mathrm{z} 648$ ($\mathrm{M}^{+}, 27 \%$), 558 (37), 557 (86), 249 (39), 248 (100) and 218 (18) (Found: C, 72.07; H , 6.31; N, 4.26. $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 72.2$; H, 6.22; N, 4.26\%).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-4,5-methylenedioxybenzylidene)-9-methoxy-8,11-dimethyl-1,5-imino-3-benzazocin-4-one 32d. Colourless prisms (ethyl acetateether) ($101.1 \mathrm{mg}, 88.0 \%$ yield), mp $141.5-143^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1660$ and 1630; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.60(3 \mathrm{H}$, s, NCH_{3}), 2.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2,6-\mathrm{H} \beta$), $3.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and $6.3,6-\mathrm{H} \alpha), 3.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,5-$ $\mathrm{H}), 4.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right.$ and 1-H), $4.99(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} 2 \mathrm{Ar})$, $5.82(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 5.93\left(2 \mathrm{H}\right.$, diffuse s, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 6.11,6.57$ and 6.63 (each $1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.81-6.84(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 7.00-7.11(3 \mathrm{H}, \mathrm{m}), 7.17-7.20(2 \mathrm{H}, \mathrm{m})$ and $7.28-7.33$
$(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 15.9\left(\mathrm{q}, \mathrm{ArCH}_{3}\right), 31.4(\mathrm{t}, \mathrm{C}-6), 41.5(\mathrm{q}$, NCH_{3}), $44.8\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 55.0\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.6(\mathrm{~d}, \mathrm{C}-1), 61.0$ (d, C-5), 71.6 (t, OCH 2), 97.4 (d), 101.4 (t, $\mathrm{OCH}_{2} \mathrm{O}$), 106.6 (d, $\mathrm{C}=\mathrm{CH}$), 108.5 (d), 110.3 (d), 118.3 (s), 123.4 (s), 126.1 (s$)$, 126.3 (d), 126.6 (d), 127.2 (d), 127.9 (d), 128.3 (d), 128.5 (d), 130.5 (d), 133.3 (s), 136.7 (s), 138.9 (s), 141.5 (s), 147.3 (s), 151.5 (s), 156.1 (s) and 169.9 (s, NCO); m/z 574 (M ${ }^{+}, 30 \%$), 484 (10), 483 (29), 189 (25) and 188 (100) (Found: C, 75.0; H, 6.08; $\mathrm{N}, 4.79 . \mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 75.24 ; \mathrm{H}, 5.96 ; \mathrm{N}$, 4.88\%).
(E)-3-B enzyl-1,2,3,4,5,6-hexahydro-2-(2-benzyloxy-3-methyl-4,5-methylenediox ybenzylidene)-9-methox y-8,11-dimethyl-1,5-imino-3-benzazocin-4-one 32e. Colourless amorphous powder ($101.5 \mathrm{mg}, 86.3 \%$ yield); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1670$ and 1630 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.08$ and 2.15 (each $\left.3 \mathrm{H}, \mathrm{S}, \mathrm{CH}_{3}\right), 2.57(3 \mathrm{H}, \mathrm{s}$, NCH_{3}), $2.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2,6-\mathrm{H} \beta), 3.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 16.2$ and 6.3, 6-H α), $3.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3,5-\mathrm{H}), 4.40$ and 4.49 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{OCHAr}), 4.77(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.83$ and 5.06 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16.2, \mathrm{NCHAr}$), 5.77 ($1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}$), 5.91 and 5.94 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.0, \mathrm{OCH} 0$), 6.13 and 6.44 (each 1 H, s, ArH), 6.80-6.85 (2 H , m), 6.86 (1 H, s, ArH), 7.05-7.08 (3 $\mathrm{H}, \mathrm{m}), 7.11-7.15(2 \mathrm{H}, \mathrm{m})$ and 7.24-7.30 ($3 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ $9.7\left(q, \mathrm{ArCH}_{3}\right), 15.9\left(q, \mathrm{ArCH}_{3}\right), 31.1(\mathrm{t}, \mathrm{C}-6), 44.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right)$, $44.7\left(\mathrm{t}, \mathrm{ArCH}_{2} \mathrm{~N}\right), 55.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.7(\mathrm{~d}, \mathrm{C}-1), 60.9(\mathrm{~d}, \mathrm{C}-5)$, 74.8 (t, OCH 2), 101.2 ($\mathrm{t}, \mathrm{OCH}_{2} \mathrm{O}$), 105.9 ($\mathrm{d}, \mathrm{C}=\mathrm{CH}$), 107.4 (d), 108.8 (d), 114.3 (s), 121.9 (s), 123.3 (s), 126.1 (s), 126.2 (d), 126.8 (d), 127.8 (d), 128.2 (d), 128.4 (d), 130.6 (d), 133.1 (s), 136.7 (), 137.2 (s), 139.7 (s), 142.9 (s), 145.9 (s), 150.2 (s), 156.1 (s) and 170.1 (s, NCO); m/z 588 (M ${ }^{+}, 22 \%$), 498 (18), 497 (44), 189 (24), 188 (100) and 91 (10) (Found: M^{+}, 588.2628. $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $M, 588.2624$).

6-Benzyloxy-3,4-methylenedioxybenzaldehyde 34

A solution of sesamol $4(1.1 \mathrm{~g}, 8 \mathrm{mmol})$ and hexamethylenetetraamine ($11.22 \mathrm{~g}, 80 \mathrm{mmol}$) in trifluoroacetic acid ($180 \mathrm{~cm}^{3}$) was heated under reflux for 4 h after which it was diluted with water ($400 \mathrm{~cm}^{3}$), and extracted with dichloromethane (3×200 cm^{3}). The combined extracts were washed with saturated aqueous sodium hydrogen carbonate ($200 \mathrm{~cm}^{3}$), dried and concentrated in vacuo to give a solid. Recrystallization of this from ethanol gave 6-hydroxy-3,4-methylenedioxybenzaldehyde 33 ($740 \mathrm{mg}, 56 \%$) as colourless needles, $\mathrm{mp} 125-126^{\circ} \mathrm{C}$ (lit., ${ }^{22} 125-$ $\left.126^{\circ} \mathrm{C}\right) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3490,1650$ and 1620; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.92$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), $6.34(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 9.46$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$) and $11.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$; m/z 166 ($\mathrm{M}^{+}, 100 \%$), 107 (14), 79 (11), 53 (16) and 52 (10) (Found: C, 57.44; H, 3.66. $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$ requires $\mathrm{C}, 57.83 ; \mathrm{H}, 3.64 \%$). Sodium hydride (60% oil dispersion, washed with dry hexane three times; $288 \mathrm{mg}, 12$ $\mathrm{mmol})$ was added to a stirred solution of the phenol $33(1.66 \mathrm{~g}$, 10 mmol) in dry DM F ($12 \mathrm{~cm}^{3}$), and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . A fter this, benzyl bromide $\left(1.33 \mathrm{~cm}^{3}\right.$, 11.2 mmol) was added to the reaction mixture which was then stirred at $0^{\circ} \mathrm{C}$ for 1 h . A fter this it was diluted with water (50 cm^{3}), and extracted with ether ($3 \times 50 \mathrm{~cm}^{3}$) The combined extracts were washed with water, dried, and concentrated in vacuo to give a solid (3.24 g), recrystallization of which from ethanol gave the title compound $34(2.26 \mathrm{~g}, 88 \%)$ as colourless needles, $\mathrm{mp} \quad 97-98^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-} 1670$ and 1620 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.01\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 5.87\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.47$ (1 H, s, 2-H), $7.13(1 \mathrm{H}, \mathrm{s}, 5-\mathrm{H}), 7.27(5 \mathrm{H}, \mathrm{s})$ and $10.14(1 \mathrm{H}, \mathrm{s}$, CHO); m/z $256\left(\mathrm{M}^{+}, 18 \%\right)$ and 91 (100) (Found: C, 70.32; H, 4.73. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 4.72 \%$).
(Z)-4-B enzyl-1-isopropyloxycarbonyl-6-(4-methoxy-3-methyl-benzyl)-3-(2-benzyloxy-4,5-methylenedioxybenzylidene)piper-azine-2,5-dione 14d
This compound was prepared by the four-step sequence described above but using the benzaldehyde 34 ($2.56 \mathrm{~g}, 10$ $\mathrm{mmol})$ and the acetate $35^{13}(3.32 \mathrm{~g}, 10 \mathrm{mmol})$.
(Z)-1-A cetyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-4,5-methylenediox ybenzylidene)piperazine-2,5-dione 11d. Pale yellow needles ($4.12 \mathrm{~g}, 78 \%$), mp 148-149 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3220,1695$ and 1615; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.98(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.61\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 3.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and $4,6-$ CHAr), 3.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and 4, 6-CHAr), 3.71 ($3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 4.94 and 5.05 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6,0 \mathrm{CHAr}$), 5.27 (1 H $\mathrm{t}, \mathrm{J} 4,6-\mathrm{H}$), 5.97 and 5.98 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,0 \mathrm{CH} 0$), $6.36,6.45$ and 6.55 (each $1 \mathrm{H}, \mathrm{s}$), $6.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8), 6.76-6.78(2 \mathrm{H}, \mathrm{m})$, 7.31-7.37 ($5 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{ArH}$) and $8.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; \mathrm{m} / \mathrm{z} 528$ ($\mathrm{M}^{+}, 31 \%$), 437 (14), 396 (12), 395 (47), 225 (16), 190 (28), 178 (23), 176 (11), 175 (13), 135 (100), 91 (35) and 43 (13) (Found: $\mathrm{C}, 68.2 ; \mathrm{H}, 5.32 ; \mathrm{N}, 5.22 . \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}{ }_{7}$ requires $\mathrm{C}, 68.17 ; \mathrm{H}, 5.34$ N, 5.3\%).
(Z)-1-A cetyl-4-benzyl-6-(4-methox y-3-methylbenzyl)-3-(2benzylox y-4,5-methylenediox ybenzylidene)piperazine-2,5-dione 12d. Pale yellow needles ($4.82 \mathrm{~g}, 100 \%$), mp 196-197 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 6.6, 6CHAr), 3.06 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 6.9, 6-CHAr), $3.66(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 4.09 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.8$, N CHAr), $5.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{I}^{2} \mathrm{Ar}\right.$), 5.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.6, \mathrm{~N}$ CH Ar), 5.42 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.9$ and $6.6,6-\mathrm{H}$), $6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.55$ and 6.62 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8), 6.89-6.94 (4 H, m), 7.15-7.19 ($3 \mathrm{H}, \mathrm{m}$), $7.26(1 \mathrm{H}, \mathrm{s})$ and 7.28-7.39 ($5 \mathrm{H}, \mathrm{m}$); m/z 618 (${ }^{+}$, 95\%), 528 (11), 527 (27), 486 (32), 485 (100), 295 (13), 294 (17), 268 (36), 251 (15), 190 (15), 135 (95) and 91 (79) (Found: C, 71.68; H, 5.6; N, 4.88 $\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$ 7 requires $\mathrm{C}, 71.83 ; \mathrm{H}, 5.54 ; \mathrm{N}, 4.53 \%$).
(Z)-4-Benzyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-4,5-methylenedioxybenzylidene)piperazine-2,5-dione 13d. Pale yellow amorphous powder ($3.73 \mathrm{~g}, 83 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3420, 1695 and 1630; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.73(1 \mathrm{H}$, dd, J 13.9 and $9.6,6-\mathrm{CHAr}$), 3.06 (1 H , dd, J 13.9 and 3.6 , $6-$ $\mathrm{CHAr}), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6$ and $3.6,6-\mathrm{H})$, 4.61 and 4.76 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{NCHAr}), 4.98(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 5.97\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.03(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.56$ and 6.57 (each $1 \mathrm{H}, \mathrm{s}$), 6.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$), 6.92 ($1 \mathrm{H}, \mathrm{s}$), 6.93-6.96 (2 $\mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{s}), 7.16-7.20(3 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{s})$ and $7.30-$ 7.37 ($5 \mathrm{H}, \mathrm{m}$); m/z 576 (${ }^{+}, 51 \%$), 485 (59), 469 (14), 457 (11), 333 (16), 268 (23), 251 (11), 190 (15), 176 (18), 135 (85) and 91 (100) (Found: $\mathrm{M}^{+}, 576.2260 . \mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires M , 576.2255).
(Z)-4-Benzyl-1-isopropyloxycarbonyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-4,5-methylenedioxybenzylidene)-piperazine-2,5-dione 14d. Pale yellow prisms ($3.86 \mathrm{~g}, 90 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1775,1730,1700$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.13$ and 1.22 (each $\left.3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}\right), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.95(1 \mathrm{H}$, dd, J 14.5 and $6.3,6-\mathrm{CHAr}$), 3.03 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.5$ and 7.9 , $6-\mathrm{CHAr}), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9$, NCHAr), $4.91(1 \mathrm{H}$, sept, J 6.3, OCH), $5.03(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{Ar}), 5.07(1 \mathrm{H}$ dd, J 7.9 and $6.3,6-\mathrm{H}$), $5.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9, \mathrm{~N}$ C H A r), $5.99(2 \mathrm{H}$ $\left.\mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.56$ and 6.62 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8), 6.91-$ $6.97(4 \mathrm{H}, \mathrm{m}), 7.16-7.18(3 \mathrm{H}, \mathrm{m}), 7.28-7.39(5 \mathrm{H}, \mathrm{m})$ and 7.41 ($1 \mathrm{H}, \mathrm{s}$); m/z 662 (M^{+}, 36\%), 486 (17), 485 (53), 295 (11), 294 (16), 268 (28), 251 (15), 190 (13), 176 (12), 136 (11), 135 (99), 91 (100), 44 (11) and 43 (19) (Found: C, 70.33; H, 5.77; N, 4.13. $\mathrm{C}_{39} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 70.49 ; \mathrm{H}, 5.79 ; \mathrm{N}, 4.22 \%$).

(Z)-4-B enzyl-1-isopropylox ycarbonyl-6-(4-methoxy-3-methyl-benzyl)-3-(2-benzylox y-3-methyl-4,5-methylenedioxybenzylidene) piperazine-2,5-dione 14e

This compound was prepared by the four-step sequence described above but using the benzaldehyde 9c ($6.75 \mathrm{~g}, 25$ $\mathrm{mmol})$ and the acetate $35(8.30 \mathrm{~g}, 25 \mathrm{mmol})$.
(Z)-1-A cetyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)piperazine-2,5-dione 11e. Pale yellow needles ($10.53 \mathrm{~g}, 78 \%$), mp 175-176 ${ }^{\circ} \mathrm{C}$ (ethyl acetate); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3200,1710,1690,1660$ and 1620 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right), 1.92$ and 2.07 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.62(3 \mathrm{H}, \mathrm{s}$, COCH_{3}), $3.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.2$ and 5, 6-CHAr), $3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$
14.2 and $3.6,6-\mathrm{CHAr}), 3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.57$ and 4.61 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{OCHAr}), 5.25$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5$ and 3.6, 6-H), 6.01 (2 $\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$) , 6.22 and 6.32 (each $\left.1 \mathrm{H}, \mathrm{s}\right), 6.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8)$, 6.72-6.74 ($2 \mathrm{H}, \mathrm{m}$), 7.21-7.33 ($5 \mathrm{H}, \mathrm{m}$) and $8.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; m/z 542 (${ }^{+}$, 38\%), 483 (10), 451 (31), 410 (19), 409 (74), 309 (17), 225 (10), 218 (12), 192 (30), 190 (31), 175 (13), 136 (11), 135 (100) and 91 (20) (Found: C, 68.48; H, 5.69; N, 5.06. $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 68.62 ; \mathrm{H}, 5.57 ; \mathrm{N}, 5.16 \%$).
(Z)-1-A cetyl-4-benzyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)piperazine-2,5-dione 12e. Pale yellow needles ($12.32 \mathrm{~g}, 100 \%$), mp 159$160^{\circ} \mathrm{C}$ (ethyl acetate); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720,1705,1635$ and $1620 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.09$ and 2.15 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.54(3 \mathrm{H}, \mathrm{s}$, COCH_{3}), 3.07 (1 H , dd, J 14.2 and 6.6, 6-CHA r), $3.12(1 \mathrm{H}$, dd, J 14.2 and $6.6,6-\mathrm{CHAr}), 3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.1, NCHAr), 4.31 and 4.44 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{OCHAr}$), 5.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.0, N CH Ar), 5.48 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,6-\mathrm{H}$), 6.04 and 6.07 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3, \mathrm{OCHO}$), $6.51(1 \mathrm{H}, \mathrm{s}), 6.65$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8$), 6.88-6.99 ($4 \mathrm{H}, \mathrm{m}$), 7.14-7.21 ($3 \mathrm{H}, \mathrm{m}$), $7.29(1 \mathrm{H}, \mathrm{s})$ and $7.30-$ $7.39(5 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 632\left(\mathrm{M}^{+}, 47 \%\right), 542(25), 541$ (65), 500 (34), 499 (100), 309 (12), 308 (18), 282 (28), 265 (12), 190 (17), 135 (75) and 91 (59) (Found: C, $72.05 ; \mathrm{H}, 5.83 ; \mathrm{N}, 4.39 . \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires C, 72.13; H, 5.74; N, 4.43\%).
(Z)-4-B enzyl-6-(4-methoxy-3-methylbenzyI)-3-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene)piperazine-2,5-dione
13e. Pale yellow amorphous powder ($11.51 \mathrm{~g}, 95 \%$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420,1695$ and 1630; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.15$ and 2.16 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 2.82 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 9.2, 6-CH Ar), 3.18 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and $4,6-\mathrm{CH}$ Ar), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.02(1 \mathrm{H}$, dd, J 9.2 and $4,6-\mathrm{H}$), 4.36 and 4.41 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2$, OCH Ar), 4.78 and 4.88 (each 1 H, d, J 15.5, N CH Ar), 6.02 and 6.03 (each 1 H, d, J 1.3, OCH O), 6.09 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), $6.44(1 \mathrm{H}$, s), 6.72 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8), $6.90-6.97(4 \mathrm{H}, \mathrm{m}), 7.09-7.17(3 \mathrm{H}, \mathrm{m})$, $7.19(1 \mathrm{H}, \mathrm{s})$ and $7.27-7.39(5 \mathrm{H}, \mathrm{m}) ; \mathrm{m} / \mathrm{z} 590\left(\mathrm{M}^{+}, 40 \%\right), 500$ (36), 499 (99), 483 (27), 471 (25), 347 (21), 282 (25), 281 (18), 190 (39), 135 (97) and 91 (10) (Found: $\mathrm{M}^{+}, 590.2411$. $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\mathrm{M}, 590.2417$).
(Z)-4-B enzyl-1-isopropylox ycarbonyl-6-(4-methoxy-3-methylbenzyl)-3-(2-benzyloxy-3-methyl-4,5-methylenedioxybenzylidene) piperazine-2,5-dione 14e. Pale yellow prisms (11.46 $\mathrm{g}, 87 \%) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1780,1750,1690$ and $1630 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 1.19 and 1.29 (each $3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CHCH}_{3}$), 2.12 and 2.14 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.9$ and 7.3, 6-CH Ar), $3.16(1 \mathrm{H}$, dd, J 13.9 and $6.6,6-\mathrm{CH}$ Ar), $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 15.2, NCHAr), 4.30 and 4.40 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.6$, OCHAr), 4.98 (1 H, sept, J $6.3, \mathrm{OCH}$), $5.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$ and $6.6,6-\mathrm{H}$), 5.36 (1 H, d, J 15.2, N CHAr), 6.03, 6.05 (each 1 H, d, J 1.0, OCH O), $6.52(1 \mathrm{H}, \mathrm{s}), 6.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8), 6.92-6.95(4 \mathrm{H}, \mathrm{m})$, 7.12-7.20 ($3 \mathrm{H}, \mathrm{m}$), 7.27-7.39 ($5 \mathrm{H}, \mathrm{m}$) and $7.44(1 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z}$ 676 (M ${ }^{+}, 57 \%$), 586 (32), 570 (13), 569 (37), 558 (11), 557 (30), 500 (28), 499 (81), 471 (14), 347 (17), 309 (12), 308 (12), 282 (29), 265 (18), 190 (22), 136 (10), 135 (100), 91 (78) and 43 (14) (Found: C, 70.80; H, 6.12; N, 4.03. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires C , 70.99; H, 5.96; N, 4.14\%).

Acknowledgements

We are grateful to Professor Kenneth L. Rinehart and Dr Ryuichi Sakai of the U niversity of Illinois who kindly provided us with a preprint of their work and offered helpful comments. We also thank Professor Tohru F ukuyama of Tokyo U niversity for useful suggestions during this work. We thank M isses S. Yoshioka and T. K oseki in the A nalytical Center of our college for the NMR and M S data measurements and microanalytical data.

R eferences

1 (a) A . E. Wright, D. A . Forleo, G. P. Gunawardana, S. P. Gunasekera, F. E. K oehn and O. J. M cC onnell, J. Org. Chem., 1990, 55, 4508;
(b) K. L. R inehart, T. G. H olt, N. L. Fregeau, J. G. Stroh, P. A. K eifer, F. Sun, L. H. Li and D. G. M artin, J. Org. Chem., 1990, 55, 4512.

2 R. Sakai, K . L. R inehart, Y. Guan and A. H.-J. Wang, Proc. Natl. A cad. Sci. U SA, 1992, 89, 11456.
3 A. K ubo and N. Saito, Synthesis of Isoquinolinequinone A ntibiotics, in Studies in Natural Products Chemistry, ed. A tta-ur-Rahman, Elsevier, A msterdam, 1992, vol. 10, pp 77-145.
4 R. Sakai, E. A. Jares-Erijiman, I. M anzanares, M. V. S. Elipe and K . L. R inehart, J. Am. C hem. Soc., 1996, 118, 9017.
5 (a) A. K ubo, N. Saito, R. Y amauchi and S. Sakai, Chem. Pharm. B ull., 1987, 35, 2158; A. K ubo, N . Saito, H. Yamato, K . M asubuchi and M. N akamura, J. Org. Chem., 1988, 53, 4295; (b) N. Saito, Y. Ohira, N. Wada and A. Kubo, Tetrahedron, 1990, 46, 7711; (c) N. Saito, S. H arada, I. Inouye, K. Yamaguchi and A. K ubo, Tetrahedron, 1995, 30, 8231.
6 K. L. Rinehart, T. G. H olt, N. L. Frageau, P. A. K eifer, G. R. Wilson, T. J. Perun J r., R. Sakai, A. G. Thompson, J. Stroh, L. S. Shield, D. S. Seigler, L. H. Li, D. G. M artin, C. J. P. Grimmelikhuijzen and G. G äde, J. N at. P rod., 1990, 53, 771; R . G. K err and N. F. M iranda, J. N at. Prod., 1995, 58, 1618.
7 V. R. Dullacker, W. Edelmann and A. Weiner, Liebigs A nn. Chem., 1968, 719, 112.
8 W. E. Smith, J. O rg. C hem., 1972, 37, 3972.
9 A. Kubo, N. Saito, H, Y amato and Y. K awakami, Chem. Pharm. Bull., 1987, 35, 2525.
10 N. J. Cussans and T. N. H uckerby, Tetrahedron, 1975, 33, 2591.
11 N. Saito, R. Yamauchi, H. Nishioka, S. Ida and A. K ubo, J. Org. C hem., 1989, 54, 5391.
12 D. A. Peters, R. L. Beddoes and J. A. Joule, J. Chem. Soc., Perkin Trans. 1, 1993, 1217.

13 N. Saito, S. H arada, M. Yamashita, T. Saito, K. Yamaguchi and A. K ubo, Tetrahedron, 1995, 51, 8213.

14 H. K urihara, H. M ishima and M. A rai, Heterocycles, 1986, 24, 1549.

15 A . A Itomara, M . C. Burla, M . Camalli, M . Cascarano, C. G iacovazzo, A. Guagliardi and G. Polidori, SIR 92, J. Appl. Crystallogr, submitted.
16 P. T. Beurskens, G. A dmiraal, G. Beurskens, W. P. Bosman, R. de G elder, R. Israel and J. M. M. Smits, 1994, DIR DIF 94, Technical Report of the Crystallography L aboratory, U niversity of N ijmegen, The N etherlands.
17 D. T. Cromer and J. T. Waber, in International Tables for X-ray Crystallography, vol. IV, The Kynoch Press, Birmingham, England, 1974, Table 2.2 A .
18 J. A. Ibers and W. C. H amilton, A cta. C rystallogr., 1964, 17, 781.
19 D. C. Creagh and W. J. M cA uley, in International Tables for C rystallography, vol. C. ed. A. J. C. Wilson, K luwer A cademic Publishers, Boston, 1992, pp 219-222.
20 D. C. Creagh and J. H. H ubbell, in International Tables for Crystallography, vol. C, ed. A. J. C. Wilson, K luwer A cademic Publishers, Boston, 1992, pp 200-206.
21 teX san, Crystal Structure A nalysis Package, M olecular Structure Corporation, 1985 \& 1992.
22 K. Fukui and M. Nakayama, Bull. Soc. Chem. Jpn., 1962, 35, 1321

Paper 6/03292C
Received 10th M ay 1996
A ccepted 6th September 1996

[^0]: § Stereochemistry yet to be determined.

